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SUMMARY

Traveltime tomography with shot-based eikonal equation fixes
shot positions then relies on inversion to resolve any contra-
dicting information between independent shots and achieve
a possible cost-function minimum. On the other hand, the
double-square-root (DSR) eikonal equation that describes the
whole survey, while providing the same first-arrival travel-
times, allows not only the receivers but also the shots to change
position and therefore leads to faster convergence in tomo-
graphic inversion. The DSR eikonal equation can be solved
by a version of the fast-marching method (FMM) with special
treatment for its singularity at horizontally traveling waves.
For inversion, we use an upwind finite-difference scheme
and the adjoint-state method to avoid explicit calculation of
Fréchet derivatives. The proposed method generalizes to the
3D case straightforwardly.

INTRODUCTION

First-arrival traveltime tomography has been an established geo-
physical tool for estimating macro-feature seismic velocities in
the near surface (Osypov, 2000; Leung and Qian, 2006; Tail-
landier et al., 2009; Noble et al., 2010). The traditional trav-
eltime tomography uses so-called eikonal equation that comes
from the leading-order WKBJ approximation of the wave equa-
tion (Bleistein, 2001; Chapman, 2002). The eikonal equation
can be solved by various numerical methods, with ray-tracing
(Zhu et al., 1992), fast-marching method (Sethian, 1999) and
fast-sweeping method (Zhao, 2005) as some of the most pop-
ular choices. For each shot, the forward eikonal solver consid-
ers only the propagating wave-front as it gradually reaches re-
ceivers further away from the fixed source. It mimics the field
acquisition process where we release one shot at a time. At in-
version, the standard least-squares minimization cost-function
sums over data misfits at each source-receiver pair. The steepest-
descent gradient out of this formulation collects back-projected
data-misfit along each source-receiver trajectory (Sei and Symes,
1994; Taillandier et al., 2009). Since the problem is non-linear,
several iterations may be required until convergence.

Because the traditional traveltime tomography relies on shot-
indexed eikonal equations, we expect the inversion to resolve
possible conflicting information in the data that happen across
different shots. In other words, the forward modeling step dis-
regards information flowing along shot dimension because the
source position is always fixed. For this reason, the inversion
may take more iterations to converge, compared to the situa-
tion where we find a way to describe the survey as a whole and
also to allow shot positions to change in the governing equa-
tion. For the later case, the double-square-root (DSR) eikonal
is appropriate. It links the vertical slowness to non-coincident

source and receiver horizontal coordinates through a disper-
sion relation. Previous works (Iversen, 2004; Duchkov and
de Hoop, 2009; Alkhalifah, 2011) solve DSR by extrapolating
isochron rays and using perturbation theory. However, for to-
mography purposes, we are only interested in first-arrivals, and
in this regard those methods are not cost-effective. Our anal-
ysis shows the causality of DSR makes it possible for it to be
solved by a Dijkstra-like non-iterative method, leading to the
unique viscosity, i.e. first-arrival, solution. Consequently, the
velocity estimation through DSR tomography becomes feasi-
ble.

In the following sections, we will first briefly review the DSR
eikonal equation, then solve it numerically with a version of
the fast-marching method, and finally introduce a new tomo-
graphic scheme based on linearization.

THEORY

DSR and its FMM implementation

The DSR eikonal equation is a first-order PDE taking the fol-
lowing form (Belonosova and Alekseev, 1974):
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where v(x,z) is the velocity of the medium, T (s,r,z) is the
prestack traveltime, (s,z) and (r,z) are source and receiver lo-
cations respectively. The ± sign before square-roots arises
from the ambiguity between ray-paths bending upward or down-
ward. For simplicity, we restrict the analysis to 2D case in this
paper. The 3D generalization is straight-forward. Equation (1)
is known to have a singularity at horizontally traveling waves
(Alkhalifah, 2011). By setting ∂T/∂ z = 0, equation (1) leads
to two traditional eikonal equations:

{
(∂T/∂ s)2 = 1/v2(s,z),
(∂T/∂ r)2 = 1/v2(r,z).

(2)

These two equations are in no conflict because they describe
source-receiver reciprocity in continuum space (as an exchange
of s and r provides the same set of equations). Iversen (2004)
and Duchkov and de Hoop (2009) develop a ray-tracing treat-
ment for (1) that allows them to control angles and avoid (2).
Alkhalifah (2011) uses perturbation theory to expand solution
of (1) for reflected waves in scattering angle and dip angle.
These methods are either expensive or inaccurate. In fact, we
can show that a semi-Lagrangian discretization of (1) follows
causality, meaning the traveltime of currently considered grid
point relies only on its upwind neighbors (Vladimirsky, 2008).
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Prestack Traveltime Tomography

The proof also applies to a Eulerian discretization via Kuhn-
Tucker optimality conditions. A Dijkstra-like non-iterative method,
analogous to FMM, is thus applicable to DSR.

The local update equation for traditional eikonal reads

(
∂T
∂x

)2

+

(
∂T
∂ z

)2

= S2. (3)

After discretization and choosing of upwind neighbors, equa-
tion (3) represents a quadratic function of T . For DSR, the
corresponding update can be obtained by either a root-search
algorithm such as Newton’s method or interval method based
on (1) or an analytical evaluation. Denote Ti = ∂T/∂ i, i = z,r,s
and Ws = 1/v2(s,z), Wr = 1/v2(r,z), we cast (1) in a polyno-
mial form in terms of power of T derivatives:
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Notice Ws and Wr are independent. Also, the ± ambiguity
in (1) disappears. The first, second and third rows in (4) are
power of T to the fourth, second and zero orders respectively.
One should further supply the one-sided finite-difference ap-
proximation for all Ti as (hi grid spacing and T i

0 the upwind
neighbor in i-th direction):

Ti =
∂T
∂ i

=
T −T i

0
hi

(5)

into (4). Solving equation (4) and (5 amounts to finding a char-
acteristic which is confined in the simplex formed by the three
upwind neighbors (see Figure 1). The resulting quartic equa-
tion has an analytical solution by Ferrari’s method (Spiegel,
1968). We pick the smallest real root that satisfies causality.

Finally, for horizontally traveling wave where Tz = 0, we take
the smaller of two results from (2)

T = min

(
T r

0 +
hr

v(r,z)
, T s

0 +
hs

v(s,z)

)
. (6)

First-arrival tomography with linearized DSR

We follow the same principle as for traditional tomography
with shot-indexed eikonal to derive a non-linear inversion scheme
based on DSR. The essential step is to linearize DSR by writ-
ing Ws, Wr and T in (4) as some background plus perturbation
∆Ws, ∆Wr and ∆T . After neglecting second-order terms, we
arrive at

az∆Tz +ar∆Tr +as∆Ts = br∆Wr +bs∆Ws, (7)

where

T

T
0

s

T
0

r

T
0

z

Figure 1: Local update through equation (4) and (5). T z
0 , T r

0
and T s

0 are chosen upwind neighbors, as follows from equa-
tion (5). The red arrow stands for the characteristic pointing
towards to grid point to be updated. While the characteristic
intersects the simplex at all possible angles, it should not be
perpendicular to the z-direction due to singularity (2). DSR
thus has an effective anisotropic behavior.

az = 2Tz(T 2
z +T 2

s +T 2
r −Ws−Wr),

ar = 2Trbr,
as = 2Tsbs,

br = T 2
r −T 2

s +T 2
z −Wr +Ws,

bs = T 2
s −T 2

r +T 2
z −Ws +Wr.

(8)

For the whole 2D discretized domain of size nz× nx, system
(7) can be written in a matrix-vector form as

A∆T = B∆W (9)

While ∆W is a vector of length nz×nx, ∆T is of size nz×nx×
nx. The A contains characteristics of DSR eikonal, similar to
the traditional tomography case. On the other hand, B is an op-
erator that extends the 2D velocity model into 3D prestack vol-
ume because each grid point can be both source and receiver.
We choose to obtain update ∆W by solving (9) in least-squares
sense, i.e. we solve the following normal equation

[
Bt A−t][

A−1 B
]

∆W =
[
Bt A−t]

∆T (10)

where superscript t stands for adjoint operator, and −t stands
for adjoint of the inverse.

Note that at singularity of DSR we should instead linearize (6).
Following the same procedure above, we have

∆Ts =
∆Ws

2
√

Ws
,or, ∆Tr =

∆Wr

2
√

Wr
. (11)

and they can be easily incorporated into (7) so as to keep the
same structure for (9). For example, if update (6) comes from
source side, then
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Prestack Traveltime Tomography

az = 0,
ar = 0,
as = 1,
br = 0,

bs = 1/
(

2
√

Ws
)
.

(12)

ALGORITHM

Our implementation is carried out in a regularly sampled Carte-
sian grid with spacing hz and hs = hr = hx (for simplicity).
Denote the discretized domain as Ω with x ∈ Ω being grid
points. Initial condition is defined on ∂Ω with T0(x). Let N(x)
be the set of neighbors of node x. A classic FMM algorithm
makes use of a priority-queue (heap) structure and monotoni-
cally propagates wave-fronts:

foreach x ∈Ω do T (x)← ∞

foreach x ∈ ∂Ω do T (x)← T0(x)
Λ←Ω∪∂Ω

while Λ 6= /0 do
y← ExtractMin (Λ)
foreach x0 ∈ (N(y)∩Λ)\∂Ω do T (x0)← Update (x0)

end

For DSR, we modify function Update for (4) and (6). The
computation can be restricted to r−s≥ 0 due to source-receiver
reciprocity. Finally, ∂Ω contains both r = s with T0 = 0 and
hx = r− s with T0 satisfying (6) (see Figure 2). If the total
number of grid points is n = nz× nx× nx, then the computa-
tional complexity of FMM DSR is in order of O(nlog(n)).

z

r

s

Figure 2: Schematic computational domain of FMM DSR
eikonal. Zero-offset plane r = s is indicated by red while grid
points with hx = r− s are paint green. See text for more de-
scription on initialization and marching procedure.

We adopt the conjugate-gradient method (Hestenes and Stiefel,

1952) with Tickhonov regularization (Tarantola, 2004) to solve
system (10). Tomography requires economical computation
and, for this regard, A can be implemented efficiently by ex-
plicit upwind finite-difference scheme (Franklin and Harris,
2001), which results in O(n) cost for applying forward or ad-
joint operators.

Figure 3: Smoothed Marmousi model. nz = 384, nx = 122,
dz = dx = 0.024km.

Figure 4: Prestack first-arrival traveltimes computed by FMM
DSR. Compare with Figure 2.

SYNTHETIC EXAMPLES

We first demonstrate FMM DSR in a smoothed Marmousi model
(Figure 3 and 4). Notice that generating the 3D volume through
standard FMM requires at least solving half nz× nx eikonals,
extracting depth slices and then concatenating results. If each
eikonal solving is carried out by standard FMM, then the com-
putational complexity is O((nz× nx)2 · log(nz× nx)). On the
other hand, the cost of FMM DSR is of order O((nz2× nx) ·
log(nz2×nx)).

To justify the accuracy of our method, we compare the results
at three depth levels against those from a second-order FMM
eikonal (Figure 5).
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Prestack Traveltime Tomography

Figure 5: Comparison of results from second-order FMM
Eikonal (solid line) and first-order FMM DSR (dashed line).
Source locations from top to bottom: magenta (0,0)km; cyan
(0.96,0)km; blue (1.92,0)km.

Next, we use a constant-velocity-gradient model as initial guess
(Figure 6) and compute the first Gauss-Newton gradient from
traditional tomography (Figure 7) as well as that from DSR
tomography (Figure 8), both after 10 conjugate-gradient iter-
ations and with the same Tickhonov regularization. The two
gradients are different in both direction and length, with the
one from DSR tomography providing more details that are
suppressed in traditional tomography.

CONCLUSION AND DISCUSSION

In traditional shot-indexed eikonal tomography, the iterative
inversion requires extra computations to resolve conflicting in-
formation from individual shots. A DSR-based first-arrival
traveltime tomography can be advantageous because it con-
siders prestack data as a whole. Due to causality of DSR, we
show that it can be solved by FMM and a corresponding up-
wind finite-difference scheme is feasible for inversion.

DSR-based tomography shares the same fundamental draw-
backs as traditional first-break tomography. For example, it
can meet difficulty resolving velocity inversion. As an under-
determined non-linear problem, regularization is another criti-
cal component.

While our current implementation is for 2D velocity model,
the extension to 3D is straightforward. While standard eikonal
is shot-wise independent and thus parallelizable, FMM DSR is
an essentially sequential algorithm. A parallel FMM DSR and
field-data applications will be considered in future study.
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Figure 6: Difference between the smoothed Marmousi model
and a constant-velocity-gradient initial model.

Figure 7: Gauss-Newton gradient from tomography with shot-
indexed eikonal.

Figure 8: Gauss-Newton gradient from DSR tomography.
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