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SUMMARY

Gaussian beams are a well-known high-frequency wavefield
approximation. A more accurate representation can be ob-
tained by the complex eikonal equation. We propose a con-
structive algorithm for solving the complex eikonal equation.
By re-writing the complex traveltime as background real and
imaginary parts and their respective perturbations, we arrive
at an update scheme that aims at solving the complex eikonal
equation iteratively. The initial prior may come from the Gaus-
sian beam approximation computed by dynamic ray tracing.
Proper boundary conditions can ensure correct update direc-
tions. The result embraces complete details of the velocity
model and therefore can help enhancing accuracy of Gaussian-
beam migration and other related applications.

INTRODUCTION

It is well-known that by introducing complex attributes into
traveltimes, one could enhance the accuracy of ray methods
(Popov, 2002). In the field of seismic imaging, the method of
Gaussian beams is an example of this idea. One could repre-
sent seismic rays using complex traveltimes and reach reason-
able approximations even around caustics. Elegant works of
Hill (1990, 2001) and others (Costa et al., 1899; Hale, 1992;
Hale and Witte, 1992; Alkhalifah, 1995; Nowack, 2003; Gray,
2005, 2007; Gray and Bleistein, 2009) have shown the power
of such techniques.

The dynamic ray tracing is a standard method for approxi-
mating complex eikonal equation along its real characteristics
(Choudhary and Felsen, 1974; Popov, 1982; Cerveny, 1982;
Cerveny et al., 1982; Cerveny, 2001; Bleistein, 2009). By in-
tegrating the imaginary part along real rays, one can construct
a solution of complex eikonal that is asymptotically accurate
near the central ray. Although dynamic ray tracing takes into
account second derivatives of velocity, the integration is car-
ried out only along the central ray and thus may not accurately
reflect velocity details aside. Shooting dense central rays could
overcome this weakness but brings a computational burden in
practice, which undermines an important advantage of Gaus-
sian beams. Another approach is higher-order beams (Tanu-
shev, 2008), which require higher-order derivatives and corre-
sponding high-order smoothness of the velocity background.

A way to construct more accurate beams is to solve the com-
plex eikonal equation. Mathematically, splitting the travel-
time into real and imaginary parts and inserting them into the
eikonal equation leads to a system of second-order nonlinear
equations of a mixed elliptic-parabolic type (Magnanini and
Talenti, 1999). Unfortunately, the solution does not propagate
along rays and requires expensive numerical methods. In 2D
case, one can apply a Backlund transformation between the
real and imaginary parts and decouple the system into semilin-

ear second-order partial differential equations with polynomial
nonlinearities. Klimes (2009a,b) suggests viewing the system
as two Hamilton-Jacobian equations. He uses a method sim-
ilar to wavefront tracing. However, the selection of surfaces
constitutes a difficult task in order to respect the multi-valued
nature of action functions. Furthermore, the finite-difference
stencil meets problem when approaching caustics.

In this paper, we propose to solve the complex eikonal by turn-
ing it into a nonlinear least-square optimization problem and it-
eratively updating a prior solution with perturbations generated
from its linearized version. Finite-difference solutions of the
traditional real-valued eikonal equation have been extensively
studied (Sethian, 1999). Aldridge (1994), Fomel (1997), and
Franklin and Harris (2001) introduced the linearized eikonal
equation and took advantage of an implicit finite-difference
scheme with superior stability and accuracy properties. Here
we expand the same idea to complex eikonal while the result-
ing problem formulation is quite different. As typical for all
similar methods, our approach relies on the initial prior. It also
provides a flexibility in handling multi-pathing.

LINEARIZING COMPLEX EIKONAL EQUATION

The eikonal equation, as derived from the WKBJ method (Chap-
man, 2004), has the form

∇T ·∇T = S2, (1)

where T (x,y,z) and S(x,y,z) are traveltime and slowness in
physical space, respectively. One can get complex-valued eikonal
from (1) by assigning imaginary part to the traveltime, as fol-
lows:

T = R+ i · I. (2)

Now we have instead of one equation (1) a system of two
partial differential equations governing the real and imaginary
traveltimes:

∇R ·∇R = S2 +∇I ·∇I, (3)

∇R ·∇I = 0. (4)

Equation (4) states that the gradients of the real and imagi-
nary parts should be orthogonal. Equation (3) is non-linear,
which leads to multiple branches of the solution. Similar to the
real-valued eikonal, complex eikonal also suffers from multi-
pathing. In order to solve equations (3) and (4), we define a
new real parameter w(x,y,z) as follows:{

∇I ·∇I = w2

∇R ·∇R = S2 +w2 (5)

One may view w as slowness for the imaginary part. By do-
ing so, we split the real and imaginary parts and attribute their
propagation to their own slowness fields. Equation (3) is satis-
fied immediately, while equation (4) can provide an objective
function for estimating w. We choose to minimize ∇R ·∇I in
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Complex Eikonal Equation

the least-square sense, i.e minimize |∇R ·∇I|2 with respect to
w. Denoting ∇R ·∇I as F [w], the Gauss-Newton method cor-
respondingly reads (k is index of iteration):

δw = wk+1 −wk =−[(∇wF)T ·∇wF ]−1(∇wF)T F [wk] (6)

To define ∇wF , we express w as a sum of some background
and small perturbation, i.e w = w0 + δw. Similarly, we have
R = R0 +δR and I = I0 +δ I. Inserting these equations into (5)
and neglecting second-order terms, we finally arrive at{

∇I0 ·∇(δ I) = w0δw
∇R0 ·∇(δR) = w0δw

(7)

Notice that S is treated as known constant and is thus canceled.
From (4) we have,

δF [w] = ∇wFδw = ∇R0 ·∇(δ I)+∇I0 ·∇(δR) (8)

Equation (7) indicates linear relations between δw and δR, δ I.
If we denote linear operators as LR = ∇R0 ·∇ and LI = ∇I0 ·∇,
then {

δ I = L−1
I w0δw

δR = L−1
R w0δw

, (9)

and equation (8) takes the form

∇wFδw = [LI ·L−1
R +LR ·L−1

I ]wkδw (10)

and completes the definition of ∇wF . This construction cor-
responds to the adjoint-state method in traveltime tomography
(Sei and Symes, 1994; Taillandier et al., 2009).

ALGORITHM

Based on equations (6) and (10), we propose the algorithm as
follows:

1. Start with an initial traveltime field. It should pro-
vide both real and imaginary parts R0 and I0. Out-
puts of Gaussian beam computed by dynamic ray trac-
ing could provide a good initial guess considering their
asymptotic accuracy. It could also be a previous com-
putation or (for simple models) the result of an approx-
imate analytic evaluation.

2. Calculate the initial slowness w0 according to (5). Both
prior real and imaginary traveltimes can provide w0,
but the imaginary part is preferable since it guarantees
w2

0 ≥ 0.

3. Solve linear system in equation (6) for δw. One may
use various numerical methods, such as the conjugate-
gradient algorithm (Hestenes and Stiefel, 1952).

4. Update w with δw and re-compute the real and imagi-
nary traveltimes as in (5) using an eikonal solver.

5. Repeat the loop.

Linear operators in equation (10) can be computed effectively
and accurately with an explicit upwind finite-difference scheme
(Franklin and Harris, 2001).

Proper boundary conditions (BCs) are critical for ensuring cor-
rect convergence direction. They also directly control the beam
width that one expects in the output. At least two BCs are
feasible in this application. One is to impose zero imaginary
traveltime along the central ray. The other requires an exact so-
lution at the surface. A construction for such analytical surface
solutions is discussed in the next section.

SYNTHETIC TESTS

The first test is with a simple constant velocity background
v(x) = v0 = 1.5km/s. By taking an exact solution of the real-
valued eikonal equation for a point source y = (y1,y2,y3) and
moving the source point to the complex plane, we construct an
exact solution of the complex eikonal equation.

T (x) =

√
(x1 − y1 − is)2 +(x2 − y2)2 +(x3 − y3)2 + is

v0
(11)

Equation (11) corresponds to the phase of the family of exact
constant-velocity wave-equation solutions (Keller and Streifer,
1971; Deschamps, 1971; Felsen, 1984; Wu, 1985; Kiselev and
Perel, 2002). The Gaussian beam in this case is an exact solu-
tion of the paraxial complex eikonal equation, as follows:

T (x)≈ x1 − y1

V0
+

(x2 − y2)2 +(x3 − y3)2

2V0(x1 − y1 − is)
(12)

We use the Gaussian beam (12) as initial guess for our nonlin-
ear inversion and test if we can converge to the exact solution
(11). Inversion is converged after only 4 iterations. Results are
shown in Figures 1 (top two rows) and 2. There is only a small
improvement on beam after update. According to equations
(11) and (12), Gaussian beam is approximating a hyperbola
with a parabola. It fits exact solution quite well around the
apex, i.e. the central ray. Although errors are significant far
away from the central way, the growing imaginary parts anni-
hilate the amplitude.

We can expect that, in more complicated media, the update
can recover wave-fields that Gaussian beam fails to approxi-
mate accurately. The second example justifies this idea. The
model contains a Gaussian anomaly that is intentionally put
away from the central ray (at location x2 = 0 and propagates
vertically downward) so that its influence is very small at cen-
tral ray. We thus assume that central ray is not perturbed.
Then we apply dynamic ray tracing with the standard 4th or-
der Runge-Kutta method to calculate Gaussian beam and use
it again as initial guess for inversion. Dynamic ray tracing is
expected to feel neighboring medium by taking into account
second-derivatives of the velocity in the direction perpendicu-
lar to the central ray. However as shown in Figure 4, Gaussian
beam fails to properly account for the anomaly, while after up-
date, beam in anomaly area is clearly upgraded. Moreover,
in theory of Gaussian beam, we restrict the beam shape to be
symmetric around the central ray. Therefore it is impossible
for a Gaussian beam to capture such one-sided anomaly as in
this example. Figure 1 (bottom two rows) compares real and
imaginary traveltimes before and after update.
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Complex Eikonal Equation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1: First row: constant velocity example real part traveltime. Second row: constant velocity example imaginary part trav-
eltime. Third row: Gaussian anomaly example real part traveltime. Fourth row: Gaussian anomaly example imaginary part
traveltime.
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Complex Eikonal Equation

(a) (b) (c)

Figure 2: Example waveforms for constant-velocity vertical beam.

Figure 3: The model with a Gaussian anomaly and its second
derivative along x2 direction (perpendicular to central ray).

CONCLUSIONS

We propose a new approach to solving the complex eikonal
equation. The original complex eikonal is split into real and
imaginary parts by introducing a pseudo-slowness. Gauss-
Newton iteration is then established to minimize the product
of gradients of the real and imaginary traveltimes, as required
by the complex eikonal equation. Boundary conditions are es-
sential for iterative convergence to the correct solution.

Preliminary numerical tests on simple velocity models show
good accuracy of the proposed method and suggest its poten-
tial application in areas such as Gaussian beam modeling and
migration. The updated real and imaginary traveltimes incor-
porate more velocity details. Therefore, we expect our method
to enhance the wave-equation fidelity of Gaussian beams. For
computational efficiency, the update can be limited to a small
region around the central ray that contains significant wave
amplitudes. There is a limitation associated with using first-
arrival eikonal solvers for updating real and imaginary parts of
the complex traveltime. To overcome this limitation, one may
need to adopt phase-space extensions of the eikonal equation.

(a)

(b)

Figure 4: Model with a Gaussian anomaly wave-field (a) be-
fore and (b) after update.
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