
SIAM J. SCI. COMPUT. c© 2015 Society for Industrial and Applied Mathematics
Vol. 37, No. 1, pp. A156–A180

A PARALLEL TWO-SCALE METHOD FOR EIKONAL EQUATIONS∗

ADAM CHACON† AND ALEXANDER VLADIMIRSKY†

Abstract. Numerous applications of Eikonal equations prompted the development of many
efficient numerical algorithms. The Heap-Cell Method (HCM) is a recent serial two-scale technique
that has been shown to have advantages over other serial state-of-the-art solvers for a wide range
of problems [A. Chacon and A. Vladimirsky, SIAM J. Sci. Comput., 34 (2012), pp. A547–A578].
This paper presents a parallelization of HCM for a shared memory architecture. The numerical
experiments in R3 show that the parallel HCM exhibits good algorithmic behavior and scales well,
resulting in a very fast and practical solver.

Key words. Eikonal equation, parallel algorithms, domain decomposition, causal numerical
methods, optimal control

AMS subject classifications. 49L20, 49L25, 65N06, 65N22, 35F30, 65Y05, 68W10

DOI. 10.1137/12088197X

1. Introduction. The Eikonal equation is a nonlinear first-order static PDE
used in a range of applications, including robotic navigation, wavefront propagation,
seismic imaging, optimal control, and shape-from-shading calculations. The compu-
tational efficiency on a fixed grid is an important practical consideration in many of
these applications. Several competing “fast” serial algorithms have been introduced
in the last two decades to solve the grid-discretized Eikonal equation. The two most
widely used are the Fast Marching Method (FMM) and the Fast Sweeping Method
(FSM). The Heap-Cell Method (HCM), introduced in the authors’ previous work [8],
is a two-scale technique based on combining the ideas of FMM and FSM. The current
paper focuses on the parallelization of HCM for a shared memory architecture. We
will start by briefly describing the relevant discretization of the Eikonal PDE (section
1.1) and the prior algorithms for solving it (sections 2 and 3). HCM is reviewed in
section 4, and the new parallel HCM (pHCM) is described in detail in section 5. The
numerical experiments in section 6 demonstrate that pHCM is efficient and achieves
good parallel scalability for a wide range of grid resolutions and domain decomposition
parameters. Additional experimental results are included in an extended version of
this paper [10]. We conclude in section 7 by discussing the limitations of our approach
and the directions of future work.

1.1. Eikonal PDE and its upwind discretization. An important subclass
of Hamilton–Jacobi equations is formed by static Eikonal PDEs:

|∇u(x)|F (x) = 1 on Ω ⊂ Rd,

u(x) = q(x) on ∂Ω.(1)

Classical (smooth) solutions of equation (1) generally do not exist, and weak solutions
are not unique [2]. However, existence and uniqueness can be shown for the viscosity

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section June 21,
2012; accepted for publication (in revised form) September 23, 2014; published electronically January
20, 2015.

http://www.siam.org/journals/sisc/37-1/88197.html
†Center for Applied Mathematics and Department of Mathematics, Cornell University, Ithaca,

NY 14853 (adamdante@gmail.com, vlad@math.cornell.edu). The authors’ research was supported in
part by the National Science Foundation grant DMS-1016150. The first author’s research was also
supported in part by an Alfred P. Sloan Foundation Graduate Fellowship.

A156

http://www.siam.org/journals/sisc/37-1/88197.html
mailto:adamdante@gmail.com
mailto:vlad@math.cornell.edu

A PARALLEL TWO-SCALE METHOD FOR EIKONAL EQUATIONS A157

solution [12]. Moreover, the viscosity solution has an important natural interpretation
as the value function of an isotropic time-optimal control problem: F can be viewed
as a speed of motion, q as an exit-time penalty on the boundary, and u(x) as the min-
imum time-to-exit Ω starting from x ∈ Ω. The gradient lines of u can be interpreted
both as the characteristics of the Eikonal PDE and as the optimal trajectories for the
corresponding optimal control problem.

In this paper we will also consider slightly more general problems, where exiting
is allowed only through a closed nonempty “exit set” Q ⊂ ∂Ω, with a prohibitively
large exit-time penalty (e.g., q = +∞) on ∂Ω\Q. This corresponds to a time-optimal
control problem “state-constrained” to motion inside Ω\Q, with u interpreted as
a constrained viscosity solution on Ω. The boundary conditions on Q are satisfied
as usual (with u = q), while ∂Ω\Q is treated as a noninflow boundary, where the
boundary conditions are “satisfied in a viscosity sense”; see [2].

Several discretizations have been developed for equation (1), but here we focus
on simple first-order upwind finite differences (similar to those presented in [28]) on
a three-dimensional (3D) uniform Cartesian grid with stepsize h. A typical gridpoint
in R3 will be denoted as xijk = (xi, yj, zk) = (ih, jh, kh), where 0 ≤ i, j, k ≤ n
with nh = 1 and M = (n + 1)3 is the total number of gridpoints in Ω = [0, 1]3. We
will use Uijk as a numerical approximation of u(xi, yj, zk), with U reserved to denote
the entire grid solution vector. For simplicity of exposition, we will assume that the
exit set Q is well approximated on this grid, and that all gridpoint values outside
this computational cube are equal to +∞. Using the above notation, the upwind
discretization can be written as(

max
(
D−x

ijkU, −D+x
ijkU, 0

))2

+
(
max

(
D−y

ijkU, −D+y
ijkU, 0

))2

+
(
max

(
D−z

ijkU, −D+z
ijkU, 0

))2

=
1

F 2
ijk

,
(2)

where ux(xi, yj , zk) ≈ D±x
ijkU =

Ui±1,j,k − Ui,j,k

±h , etc.

Equation (2) must hold at each gridpoint (xi, yj, zk) ∈ Ω\Q, yielding a system of
coupled, nonlinear equations. Since the set Q ⊂ ∂Ω is usually lower-dimensional, the
total number of these equations is still O(M). If the values of U at the neighboring
gridpoints were available, equation (2) could be solved directly for Uijk. Since those
neighboring U values are not a priori known, the resulting system can be solved
iteratively (e.g., using Gauss–Seidel iterations), with Vijk denoting temporary values
(or “temporary labels”). When these temporary gridpoint values stop changing, the
iterative process terminates and V ≡ U .

However, the upwind nature of the discretization guarantees that not all neigh-
boring values are relevant; i.e., only those neighboring values smaller than Uijk are
actually needed to compute it from equation (2). This is also a reflection of the
Eikonal equation’s causality property, which is often exploited in the construction of
fast algorithms.

2. Prior serial methods. The literature on serial methods for the Eikonal is
vast; see [8] for a recent review. Here we describe only those methods directly relevant
to HCM and its parallelization. For simplicity we describe these methods for Eikonal
equations on Cartesian grids, but we note that some of them have been developed in
much greater generality (see [5, 21, 24] and [23, 32, 33], for example).

A158 ADAM CHACON AND ALEXANDER VLADIMIRSKY

The FSM [34, 37] solves system (2) by Gauss–Seidel iterations with an alternating
ordering of the gridpoints at each iteration. These orderings, or “sweep directions,”
are given by the standard loop orderings for Cartesian grids. For example, in two
dimensions these are

i = 0, . . . , n, i = n, . . . , 0, i = 0, . . . , n, i = n, . . . , 0,

j = 0, . . . , n, j = 0, . . . , n, j = n, . . . , 0, j = n, . . . , 0.

There are 2d loop orderings in d dimensions. The efficiency of FSM is due to
the fact that each characteristic of the solution can be divided into a finite number
of contiguous portions where the characteristic directions in each portion are within
only one quadrant. Every 2d sweeps all gridpoints along at least one of these portions
will obtain their final values U . The number of sweeps to convergence is related to
ρ, the maximum number of times a characteristic changes direction from quadrant
to quadrant. Also, this number of sweeps is typically largely independent of the grid
size as h → 0 [37], resulting in O(ρM) algorithmic complexity. Unfortunately, even
for fixed functions F and q, this ρ is a priori unknown; moreover, ρ is dependent on
the grid orientation.

An additional speedup technique, the Locking Sweeping Method (LSM) [1], uses
boolean “active flags” at each gridpoint to determine whether or not it will be updated
in the next sweep. (A value at a given gridpoint definitely will not change if none
of its neighboring values have changed in the previous sweep.) Initially only the
gridpoints adjacent to the exit set are marked as “active.” This technique reduces the
total number of gridpoint computations per sweep but does not reduce the number
of sweeps to convergence.

The FMM [30, 31] is a noniterative method that uses the Eikonal equation’s
causality property to dynamically determine an order in which to process the grid-
points. A set L of “considered” gridpoints is maintained. At each step of the al-
gorithm, the considered gridpoint with the smallest temporary value is permanently
“accepted,” and its not-yet-accepted neighbors are updated. The set L at each step
can be regarded as an approximation to the current level set of u. When L is struc-
tured as a min-heap, updating it incurs an O(log(m)) cost, where m = |L|. The
performance of FMM thus depends on the (d−1)-dimensional volume of the level sets
of u; the upper bound for complexity is O(M logM). While the performance of FMM
is more robust with respect to changes in the speed function F , domain geometry,
and grid orientation, this method is not much faster for simpler problems, e.g., when
the characteristics are straight lines (the regime where FSM is most efficient).

The HCM is a serial two-scale method that was introduced to combine the
strengths of FMM and FSM on different scales. On the coarse scale, a Fast Marching-
like method is used to order the subdomains, and on the fine scale, sweeping (specifi-
cally LSM) is used on each subdomain separately; see section 4 for a thorough descrip-
tion. The informal motivation for this is that sufficiently zooming in on a portion of
the domain reveals that characteristics are approximately straight lines on that length
scale, so sweeping restricted to that portion will converge quickly. Even though the
original purpose of the domain decomposition in HCM was to exploit the structure
of the PDE serially, in this paper we show that the parallelization of the HCM is a
natural byproduct and proves to be a very effective strategy; see section 6.

It is well known that many of the methods for Eikonal equations are directly
related to prior algorithms for finding shortest paths on graphs.1 Here we simply

1Such graph algorithms are usually called label-setting and label-correcting. To reflect this, we
are using the terms gridpoint “value” and “label” interchangeably.

A PARALLEL TWO-SCALE METHOD FOR EIKONAL EQUATIONS A159

acknowledge this connection, but it is explored in detail in [8]. In this framework,
FMM and the prior noniterative method in [35] are analogous to Dijkstra’s method
[14]. The Small Labels First/Large Labels Last (SLF-LLL) [3] is another fast method
originally designed for graph problems but also extended to Eikonal PDEs [27]; this
iterative algorithm was designed to mimic the acceptance order of nodes in Dijkstra’s
method while avoiding the costs associated with min-heap data structures. Even
though the worst-case complexity of SLF-LLL is not as good as that of Dijkstra’s, in
practice its performance can be better on many types of graphs.

3. Prior parallel methods. Several interesting approaches have been used to
design parallel methods for Eikonal and related PDEs. Although a careful perfor-
mance/scalability comparison of all such methods would clearly be valuable for prac-
titioners, it remains beyond the scope of the current paper. Here we give a brief
overview of prior approaches primarily to put pHCM in context. In section 6 we also
use one of them as a benchmark for comparison with our own approach.

Two different parallelizations of FSM were introduced in [38]. The first paral-
lelization performs a domain decomposition and uses separate processors to run the
serial FSM on each subdomain. Subdomains are preassigned to processors, and com-
munication takes place along the shared boundaries. The second approach presented
in [38] does not use domain decomposition and performs all 2d sweeps simultane-
ously on separate copies of the domain; these copies are then synchronized after each
iteration by assigning the minimum value for each gridpoint.

The method of [13] is a more recent parallel sweeping technique (which we call
the Detrixhe Fast Sweeping Method or DFSM) that utilizes the fact that, for the
upwind scheme in three dimensions (equation (2)), gridpoints along certain planar
slices through the computational domain do not directly depend on each other. The
planes are given by

αii+ αjj + αkk = C

for αi, αj , αk ∈ {−1, 1} and C ∈ Z. The choice of α’s determines one of the 23

sweeping directions; once the α’s are fixed, the sweeping is performed by incrementing
C (which corresponds to translating the plane in the sweep direction). This is a
Cuthill–Mckee [29] ordering of the gridpoints. Inside any such plane the gridpoint
updates are “embarrassingly parallel,” but the resulting method is synchronous since
a barrier is required after processing each plane. Unlike the methods in [38], this
algorithm requires exactly the same number of sweeps as the serial FSM and also
exhibits much better scalability. This appears to be the current state-of-the-art in
parallel sweeping methods for a shared-memory architecture; thus, we have chosen to
benchmark our results against it in section 6. We note that a similar parallelization
approach can also be used with the regular (lexicographic) gridpoint ordering but
with an appropriately extended stencil/discretization. This idea was previously used
in [36] for distance computations on parametric surfaces, and more recently in [16] to
parallelize the sweeping for more general (anisotropic) problems.

As for marching approaches, the canonical FMM is inherently serial (as is Dijk-
stra’s method) and relies on a causal ordering of computations. Several parallelizations
of FMM have been developed employing fixed (problem-independent) domain decom-
positions and running the serial FMM locally by each processor on a preassigned
subdomain(s) (e.g., [18] and [6]). In the absence of a strictly causal relationship be-
tween subdomains, this inevitably leads to erroneous gridpoint values, which can be
later fixed by rerunning the FMM whenever the boundary data changes. A very

A160 ADAM CHACON AND ALEXANDER VLADIMIRSKY

recent massively parallel implementation for distributed memory architecture in [15]
uses coarse grid computations to find a good subdomain preassignment, attempting
to exploit nonstrict causality to improve the efficiency; the approach is then reused
recursively to create a multilevel framework.

The main difficulty with making the most effective use of a domain decomposi-
tion for the Eikonal equation is that the direction of information flow at subdomain
boundaries is not known a priori. If the domain is decomposed so that there is ex-
actly one subdomain per processor, the loads may not be balanced. Additionally, a
problem shared by all algorithms using a fixed domain decomposition is the existence
of mutually dependent subdomains with a high degree of dependency; see Figure 1.
Nevertheless, domain decomposition is often preferred as a parallelization approach
to improve the cache locality and to avoid the use of fine-grain mutual exclusion.

A recent approach aims to minimize the interdomain communications by creating
problem-dependent causal domain decompositions. The “Patchy FMM” developed in
[7] for feedback control systems uses coarse grid computations to build (almost) causal
subdomains, which are then processed independently. The disadvantages of this ap-
proach include complicated subdomain geometries, additional errors along subdomain
boundaries, and frequent load balancing issues (since the causal subdomains are often
very different in size).

In principle, it is also possible to parallelize some prior Eikonal solvers (e.g., the
Dial-like algorithm [35] and the Group Marching Method [22]) without resorting to do-
main decompositions. But we are not aware of any existing parallel implementations,
and the scalability is likely to be very limited due to the focus on gridpoint-level paral-
lel computations. For shortest path problems on graphs, examples of asynchronously
parallelizable algorithms include the threshold method and the SLF-LLL method [4].
The idea in parallelizing the latter is to let each processor run a serial SLF-LLL
method on its own local queue, but with a heuristic used to determine which queue
is to receive each graph-node tagged for updating. A mutex is used for every node
to prevent multiple processors from attempting to modify it simultaneously. This
parallel design inspired our own (cell-level) approach in the pHCM.

Several parallel algorithms were also developed for other computer architectures.
One method proposed in [36], intended for SIMD and GPU architectures, computes
shortest geodesic paths on parametric surfaces. In this Parallel Marching Method
(PMM) the subdomains are processed serially with a dynamic ranking procedure
similar to that of FMM. Each time a subdomain is processed, the values of all grid-
points within it are updated using parallel “raster scans,” which are similar to the
parallel sweeps in [38] and [13].

Another method intended for massively parallel (SIMD and GPU) architectures
is the Fast Iterative Method (FIM) developed in [20]. In FIM, an unsorted list L of
active gridpoints is maintained, and at each iteration all gridpoints on L are updated
in parallel using Jacobi updates. A variant, the Block FIM, maintains blocks of
gridpoints on L, and all blocks on L are updated in parallel. New blocks are added
based on whether any of their gridpoints received updates. Blocks are used to take
advantage of the SIMD parallelism.

4. Heap-cell method. To simplify the exposition, we give the following descrip-
tion of HCM in two dimensions. The translation to higher dimensions is straightfor-
ward. We first introduce some relevant notation:
• X = {x1, . . . ,xM}, the grid (same as the grid used in FMM or FSM). This

single-subscript notation is meant to emphasize a gridpoint ordering, rather than the

A PARALLEL TWO-SCALE METHOD FOR EIKONAL EQUATIONS A161

Fig. 1. Level sets for an Eikonal problem in two dimensions with cell boundaries and a charac-
teristic curve. Since the characteristic repeatedly crosses the subdomain boundary, any method that
solves this problem using the given domain decomposition will require a large number of iterations.

geometric position indicated by the subscripts in formula (2). The corresponding
gridpoint values are denoted as Vi = V (xi).

• Q′ = X ∩Q, the set of “exit gridpoints,” whose values are prescribed.

• Z = {c1, . . . , cJ}, the set of cells (or “nonoverlapping box-shaped subdomains”).

• Qc = {c ∈ Z | c ∩Q′ �= ∅}.
• N(xj), the grid neighbors of xj , i.e., the gridpoints that exist to the north,

south, east, and west of xj .

• N c(ci), the set of neighboring cells of ci, i.e., the cells that exist to the north,
south, east, and west of ci.

• N(ci), the grid neighbors of ci, i.e.,

N(ci) =
{
xj ∈ X | xj �∈ ci and N(xj)

⋂
ci �= ∅

}
.

• V c, the cell label.

• hc
x and hc

y, the two cell dimensions (assume hc
x = hc

y = hc).

• r, the number of gridpoints per cell side.

To ensure that each gridpoint belongs to one and only one cell, the cell boundaries
are not aligned with gridlines, and Ωc =

⋃
j=1,...,J cj must be a superset of Ω; see

Figure 2.

The original HCM, presented in [8], is a serial two-scale method. When the two-
dimensional analogue of system (2) is solved on a cell c (using any method), if the
values of N(c) are already correct, then all xi ∈ c will receive their final values Ui.
Each cell is therefore dependent on a subset of N c(c), and the hyperbolic nature
of the problem suggests that there is a preferred order of processing the cells. The
motivation for employing a serial domain decomposition using sweeping on the grid
is that, if the cell sizes are small enough, the characteristics within each cell will be
approximately straight lines, and sweeping will converge in very few iterations.

A162 ADAM CHACON AND ALEXANDER VLADIMIRSKY

(a) (b)

Fig. 2. Two examples with different domain decompositions. Both (a) and (b) are based on
the same grid (dotted), with M = 82 and h = 1/7. Figure (a) uses the cell size hc = 4/7, the total
number of cells J = 22, and r = 4 gridpoints per cell side. Figure (b) uses hc = 2/7, J = 42, and
r = 2.

The HCM maintains a list L of cells-to-be-processed, initially populated with Qc.
The entire grid is initialized only once, in the same way as it is for LSM.2 At each
iteration of the main algorithm, a cell c is chosen from L and equation (2) is solved by
LSM on X ∩ c with the boundary conditions specified by the current values on N(ci).
The order of processing of the cells is determined dynamically based on heuristically
assigned and updated cell values. The name “Heap-Cell” comes from organizing L as
a min-heap data structure. HCM is designed to mimic FMM on the cell level (though
previously processed cells may re-enter L; see Algorithm 1 for the pseudocode). Since
in typical cell decompositions J M , the cost of maintaining the heap L is small
compared to the cost of grid computations. The experimental evidence in [8] shows
that HCM is very efficient for a wide range of M and J values.

Algorithm 1. Heap-Cell Method main loop.

1: Initialize cell values and grid values
2: Add all c ∈ Qc cells to L
3: while L nonempty do
4: Remove the cell c with the smallest cell value from L
5: V c(c)← +∞
6: Perform modified LSM on c until convergence and populate

the list DN of currently downwind neighboring cells //see Algorithm 2

7: for each neighbor ck ∈ DN do
8: Update V c(ck), the cell value of ck
9: Add ck onto L if not already there

10: Update the preferred sweeping directions of ck
11: end for
12: end while

We say that a cell B is currently downwind from a cell A if (1) A was the last
processed cell, (2) there exist neighboring border gridpoints xi ∈ A and xj ∈ B such

2That is, all xi �∈ Q′ have Vi = ∞; the active flags of gridpoints in {x ∈ N(xi)|xi ∈ Q′,x �∈ Q′}
are set to “active”; and the active flags of all other gridpoints are set to “inactive.”

A PARALLEL TWO-SCALE METHOD FOR EIKONAL EQUATIONS A163

that the value of Vi has changed the last time A was processed, and (3) Vi < Vj . See
Figure 3. We note that, since this relationship is based on the temporary labels V ,
it is entirely possible that the same A might be also downwind from B at a different
stage of the algorithm.

Unfortunately, a good dependency ordering of cells may not exist even if we could
base it on permanent gridpoint labels U or even on the continuous viscosity solution
u(x). We will say that B depends on A if there exists some optimal trajectory
crossing the cell boundary from B to A on its way to Q. This allows us to construct a
dependency graph on the set of cells. We will say that a cell decomposition is strictly
causal if this dependency graph is acyclic. A strictly causal decomposition ensures
that there exists an ordering of cells such that each of them needs to be processed
only once.

Figure 1 shows that, for many generic problems and large hc, neighboring cells A
and B are likely to be interdependent, resulting in multiple alternating reprocessings
of A and B. As hc decreases, the decomposition becomes weakly causal—most cell
boundaries become either purely inflow or purely outflow. Additionally, if the ordering
is such that most dependents are processed after the cells on which they depend, the
average number of times each cell is processed becomes close to one. As confirmed by
the numerical evidence in [8], weakly causal domain decompositions are very useful
in decreasing the computational costs of serial numerical methods.

BA

xjxi

Fig. 3. Suppose that as a result of processing the cell A an eastern border value Vi becomes
updated. If Vi < Vj and xj �∈ Q′, then cell B is downwind of cell A. In this case cell B will be
added onto L unless already there, its value will be updated, and its preferred sweeping directions
will be updated.

Processing cells by using Fast Sweeping Methods. Sweeping using LSM
[1] is performed on the cell c by using the neighboring grid values as boundary data.
Precisely, the domain for processing c is c̃ = c ∪N(c), with the boundary conditions
defined as q̃(xi) = q(xi) on c ∩Q′ and q̃(xi) = Vi on N(c). The sweeping processes
gridpoints one at a time, with the gridpoint update procedure detailed in Algorithm 2.

As in the usual LSM, we loop through different sweeping directions, using a new
one in each iteration. However, by the time a cell B needs to be processed, the
boundary information from its previously processed neighboring cells can be used
to determine the preferred directions to start sweeping, with the likely effect of re-
ducing the total number of sweeps needed to converge in B. This is accomplished
by having each cell maintain a list of boolean preferred-sweep-direction flags, and by
LSM beginning sweeping only from the directions marked TRUE. If the convergence
is not achieved after performing sweeps in these preferred directions, we revert back
to a standard loop (i.e., in two dimensions the default standard loop would be SW,
SE, NE, NW). After a cell is processed, all sweep-direction flags are set to FALSE. A
sweep-direction flag of a cell B is updated to TRUE only at the time a neighboring cell

A164 ADAM CHACON AND ALEXANDER VLADIMIRSKY

Algorithm 2. Modified LSM update at a gridpoint xi.

1: if xi is inactive then
2: Do nothing
3: else
4: Set xi inactive
5: Compute a possible new value Ṽ for xi by solving equation (2)

6: if Ṽ < V (xi) then

7: V (xi)← Ṽ
8: for each xj ∈ N(xi)\Q′ do
9: if V (xj) > V (xi) then

10: Set xj active
11: if xj is in a different cell from xi then
12: Tag that cell as part of the list DN of currently downwind

cells
13: end if
14: end if
15: end for
16: end if
17: end if

A tags B as downwind. The directions that are updated depend on the location of
A relative to B. For example, if B is downwind from A as in Figure 3, then both
A-relevant sweep-direction flags in B (i.e., both NW and SW) will be set to TRUE.

In principle, the actual values of the border gridpoints could also be used to further
restrict the list of preferred sweep directions (with the goal of avoiding unnecessary
sweeping). The Fast Heap-Cell Method introduced in [8] uses one such acceleration
technique by checking the “monotonicity” of boundary data. Since this technique is
more costly in R3, we are not using it in the current implementation of HCM.

Assigning cell values. Cell values are computed heuristically and intended to
capture the direction of information flow. If a cell B depends on a cell A, then ideally
V c(A) < V c(B) should hold to ensure that A is processed earlier. We emphasize
that the choice of a particular cell value heuristic does not affect the final output
of the HCM (see [8] for a proof of convergence), but may affect the method’s overall
efficiency. An ideal heuristic would reflect the inherent causal structure. For example,
if the cell decomposition is strictly causal, using a good cell value heuristic would result
in exactly J heap removals. For weakly causal cell decompositions (attained for all
problems once hc becomes sufficiently small), a good cell value heuristic ensures that
the average number of heap removals per cell becomes closer to 1; see [8] and sections
6.1 and 6.2 of the current paper for experimental evidence.

In this paper, our treatment of the cell value differs from that in [8] in two ways:
(1) whenever a cell B is removed from L, we reset V c(B) to +∞, and (2) we assign
V c(B) as the smallest of the newly updated gridpoint values in N(B); see formula
(3). The logic is that cells should be ranked by the currently most upwind inflow.
We reset V c(B) so that if B is to be processed again, the later time-of-processing
will be determined only by new inflow information. This heuristic appears to be very
efficient for a variety of examples and easily generalizes to higher dimensions. Most
importantly, it seems to be effective at handling discontinuities in the speed function
that do not align with the cell boundaries, which was a weakness of the cell value

A PARALLEL TWO-SCALE METHOD FOR EIKONAL EQUATIONS A165

in [8]. Our current cell value update formula is

Ṽ c(B)← min
j∈Anew

V (xj), V c(B)← min(V c(B), Ṽ c(B)),(3)

where Anew is the set of newly updated “inflow for B” gridpoints of A along the rel-
evant cell border; i.e., Anew = {xi ∈ N(B) ∩ A | recently updated Ui < Uj for some
xj ∈ B ∩N(xi)}. An efficient implementation of this heuristic relies on updating the
current minimum border value of B at line 12 of Algorithm 2. The equivalent of for-
mula (3) was also previously used to determine the processing order of large “charts”
in [36].

Finally, we use a natural initialization of cell values before the main loop of the
algorithm:

V c(c) ←
{
min{V (xj) |xj ∈ c ∩Q′} if c ∈ Qc,

+∞ otherwise.

5. Parallelization. There are several different approaches one can take to par-
allelize HCM. It is possible, for instance, to parallelize the sweeping scheme within
an individual cell. Our choice for pHCM was to have multiple subdomains processed
simultaneously. Each processor p essentially performs the serial HCM on its own local
cell-heap Lp, but with one important difference: when a cell c is tagged for repro-
cessing, we attempt to add it to the heap Lj with the lowest current number of cells.
Except for some modifications explicitly described below, most of the subroutines of
the serial HCM can be directly reused in pHCM as well. In Algorithm 3, all data is
shared unless stated otherwise.

The described algorithm gives rise to occasional (benign) data race conditions.
But before explaining why they have no impact on correctness/convergence, we high-
light several main design decisions:

• To ensure efficiency/scalability, there is no synchronization mechanism at the
gridpoint level.
• Unlike many other parallel Eikonal solvers, pHCM is asynchronous; i.e., no
barriers are used to ensure that cells are processed in some specific order.
• There are two separate “individual cell operations” that must be serialized:
(1) the movement of a cell onto/off of/within a heap, and (2) the update
of gridpoint values within that cell. However, both of these can be safely
performed simultaneously. Thus, each cell maintains both a “compute” lock
and a “position” lock to allow for the overlapping of these operations.
• Adding a cell onto the heap with fewest elements ensures good load balanc-
ing. But if that heap is currently locked, waiting for the lock to be released
might have the opposite effect on the method’s performance. Since we can
assign the cell to another heap without drastically altering the balance, we
attempt to obtain the lock using the omp test lock subroutine, and move on
to the next heap if that attempt was unsuccessful; see Algorithm 5. Profiling
shows that this approach always results in better performance than using the
omp set lock.
• The activeCellCount is decremented on line 29 of Algorithm 3 (rather than
around line 10) to prevent other threads from quitting prematurely.
• The cell update (lines 15–17 of Algorithm 3) is exactly the same sweeping
procedure as in HCM. Just as in HCM, any other method that solves system

A166 ADAM CHACON AND ALEXANDER VLADIMIRSKY

Algorithm 3. Parallel Heap-Cell Method pseudocode.

1: Cell Initialization: same as in HCM (divide cells Qc evenly among all heaps Lp)
2: Fine Grid Initialization: same as in HCM
3: P ← number of threads
4: activeCellCount ← |Qc|
5: PARALLEL SECTION
6: while activeCellCount > 0 do
7: while Lp is nonempty do
8: Lock heap Lp

9: Position-lock cell c at the top of Lp

10: Remove c from Lp

11: V c(c)← +∞
12: Position-unlock c
13: Unlock Lp

14: Compute-Lock c
15: Perform modified LSM on c and populate the (local) list DN
16: of currently downwind neighboring cells //see Algorithm 2
17: Set all preferred sweeping directions of c to FALSE

18: Compute-Unlock c
19: for each ck ∈ DN do

20: Compute a possible new (local) cell value Ṽ for ck

21: if Ṽ < V (ck) then

22: Set Cell Value (ck, Ṽ) //see Algorithm 4
23: end if
24: if ck is not on a heap then
25: Add Cell (ck) //see Algorithm 5
26: end if
27: Update sweeping directions of ck based on location of c
28: end for
29: activeCellCount −− (atomic)
30: end while
31: end while

(2) within a cell c may be substituted in place of LSM. However, if the grid
value updates inside c also involve updating any grid-level data in N c(c), the
potential race conditions must be handled carefully. Below we explain how
this issue is handled in LSM for the active flag updates across cell boundaries.

5.1. Efficiency and data race conditions. There is always a delicate tradeoff
between performance-boosting heuristics in the serial realm and the synchronization
penalty they would incur in the parallel implementation. The serial HCM has several
features (the use of LSM within cells, the use of preferred sweeping directions, the
accuracy of cell values at predicting information flow) that could cause contention
when parallelized. In this section we describe how we chose to handle those features
in designing pHCM. Since there is no synchronization at the gridpoint level, we have
actually allowed several data races to be present in the algorithm. We first check the
convergence of the algorithm in the presence of these data races.

For all of the following arguments we assume a sequentially consistent memory
model, meaning that the instructions in Algorithm 3 are executed in the order in

A PARALLEL TWO-SCALE METHOD FOR EIKONAL EQUATIONS A167

Algorithm 4. Set cell value (ck, Ṽ).

1: success ← FALSE

2: while success == FALSE do
3: if ck is not on a heap then
4: Position-lock ck
5: if ck is still not on a heap then
6: V (ck)← min(Ṽ , V (ck))
7: success ← TRUE

8: end if
9: Position-unlock ck

10: else
11: j ← index of the heap of ck
12: Lock Lj

13: Position-lock ck
14: if ck is still on Lj then

15: V (ck)← min(Ṽ , V (ck))
16: Heap-sort Lj

17: success ← TRUE

18: end if
19: Position-unlock ck
20: Unlock Lj

21: end if
22: end while

Algorithm 5. Add cell (ck).

1: j ← index of heap with fewest elements (no locking; counts may be outdated
during search);

2: testCount ← 0
3: while Lock L(j+testCount)%P can not be immediately obtained do
4: testCount++
5: end while
6:

7: Position-Lock ck
8: if ck is still not on a heap then
9: Add ck onto L(j+testCount)%P

10: activeCellCount ++ (atomic)
11: end if
12: Position-Unlock ck
13: Unlock L(j+testCount)%P

which they appear. On modern platforms it is possible that compilers or hardware
will reorder the program’s instructions. While these optimizations are innocuous in
serial codes, in a multithreaded environment this can lead to unexpected results.3

First consider a more basic version of pHCM that uses FSM within cells instead of
LSM. There is still a possibility of data races along the boundary of each cell: updating

3Indeed, in our implementation it was actually necessary to explicitly prevent such reordering of
certain lines of code (using the OpenMP “flush” pragma).

A168 ADAM CHACON AND ALEXANDER VLADIMIRSKY

a border gridpoint by equation (2) requires reading information in a neighboring cell.
However, it is easy to see that the monotonicity of gridpoint value updates makes
such data races harmless. Suppose two cells A and B are being simultaneously swept
by processors pA and pB, respectively (see Figure 3). Suppose also that B undergoes
its final sweep. First, the most obvious outcome is that

a. pA updates xi (and writes Vi);

b. pA checks Vj and finds Vi < Vj , ⇒ tags B to be added onto a heap.

So, B will have a chance to use the new boundary information Vi the next time it
is processed. Now, suppose neighbors xi and xj are updated simultaneously (i.e.,
Algorithm 2 is executed in parallel at xi and xj by the different processors). Suppose
also that the final sweep in A leaves Vi < Vj . Then either

a. pA writes V (xi);

b. pB writes V (xj);

c. pA checks Vj and finds Vi < Vj , ⇒ tags B to be added onto a heap;

d. pB checks Vi and finds Vi < Vj , ⇒ does nothing

or

a. pB writes V (xj);

b. pB checks Vi and finds Vj < Vi, ⇒ tags A to be added onto a heap;

c. pA writes V (xi);

d. pA checks Vj and finds Vi < Vj , ⇒ tags B to be added onto a heap.

In the latter case the cell A is unnecessarily added onto a heap, but this redundancy
does not impact the convergence. Therefore, a cell with new inflow boundary infor-
mation is always guaranteed to be reprocessed at some later point.

But our reliance on the Locking Sweeping technique introduces an additional
issue: it is also necessary to ensure that all relevant boundary gridpoints in that yet-
to-be-reprocessed cell will be marked as “active”—since otherwise the first cell-sweep
will not touch them. Recall that pA will only set the gridpoint values within A, but
because of LSM, it might also change the active flags of gridpoints in N(A)∩B. What
if xi and xj are updated simultaneously, pA makes xj active, but pB immediately
resets it as inactive and Vj is never recomputed based on the new value of Vi? The
order of operations in Algorithm 2 makes this scenario impossible, since setting a
gridpoint inactive is immediately followed by the recomputation of that gridpoint’s
value.

Finally, there is one additional design choice we have made that causes a race
condition at the cell level when setting the cell’s preferred-sweep-direction flags. After
processing a cell A, we typically need to update the preferred sweeping directions of
its neighboring cells. If one of these neighboring cells B is simultaneously processed
using LSM, the preferred directions data might be overwritten. We could avoid this
scenario by obtaining B’s computation lock before updating its preferred directions.
Our implementation does not use this idea because the preferred directions only reduce
the number of sweeps without affecting the convergence, and because the additional
contention would dominate the savings for most M/J ratios. Since all other access
to cell-level data is lock protected, pHCM converges.

6. Numerical experiments. In this section we present and compare the perfor-
mance of FMM, FSM, LSM, HCM, DFSM (a parallel sweeping method), and pHCM
on three qualitatively different examples. Our primary goal is to test the “strong
scalability” of pHCM with various cell decompositions. Sections 6.1 and 6.2 provide
a more detailed performance analysis of the serial and parallel methods, respectively.

A PARALLEL TWO-SCALE METHOD FOR EIKONAL EQUATIONS A169

Our source code and scripts for all methods and examples in this paper are publicly
available from http://www.math.cornell.edu/∼vlad/papers/pHCM/.

Benchmark problems. We consider three Eikonal examples with an exit set
{(0.5, 0.5, 0.5)} on a unit cube domain Ω = [0, 1] × [0, 1] × [0, 1]. In all three cases,
the boundary conditions are q = 0 in the center and q = +∞ on the boundary of
the cube. Since the center of the computational domain is not a gridpoint (i.e., M is
even), we have initialized U on the set Q of the eight gridpoints closest to the center.
Since J values are also even, the set Qc contains eight cells in all of the examples.

The speed functions are as follows:
1. F ≡ 1.
2. F (x, y, z) = 1 + .5 sin (20πx) sin (20πy) sin (20πz).
3. F (x, y, z) = 1 + .99 sin (2πx) sin (2πy) sin (2πz).

These examples are “representative” in the sense that their respective viscosity
solutions are qualitatively very different. In example 1, all characteristics are straight
lines. In example 2, the characteristics are highly oscillatory and might weave through
cell boundaries many times. The third example has more moderate behavior, with
curved characteristics that do not oscillate rapidly.

Experimental setup and implementation details. All experiments were per-
formed on the Texas Advanced Computing Center’s “Stampede” computer, using a
single Dell PowerEdge R820 node with four E5-4650 8-core 2.7 GHz processors and
1TB of DDR3 memory. We implemented all methods in C++ and compiled with the
-O2 level of optimization using the Intel Composer XE compiler v13.0. All solutions
were computed and stored using double precision. The speed F (x, y, z) was computed
by a separate function call as needed, instead of precomputing and storing it for every
gridpoint. HCM and pHCM use Locking Sweeping, which is experimentally always
much faster than regular Fast Sweeping. In all iterative methods, the sweeps were
continued as long as some gridpoints received updated values. In benchmarking all
parallel methods, we have used one thread per core, up to a total of 32 cores. In
addition, for some r values, the performance of pHCM may be significantly influenced
by both system-level background processes and variations in the effective speed of the
cores. To fully reflect this, each pHCM test was performed 30 times, and we report
both the median values and the max/min “error bars.”

We compare our method’s performance/scaling to a parallelization of the sweeping
methods. Our implementation largely follows the method described in [13], but with
two exceptions:

• Detrixhe, Gibou, and Min have not tested a “locking sweeping” version of
their method; our implementation of DLSM is based on a straightforward
substitution of LSM updates for FSM updates.
• Our implementations of DFSM and DLSM use the default OpenMP static
loop scheduling (“omp for”) to divide the work among threads instead of the
manual load balancing procedure described in [13].

We have also conducted many additional numerical tests including

• benchmarking with single precision data/computations;
• benchmarking with “early termination criterion” for sweeping methods;
• benchmarking on a different shared memory architecture;
• benchmarking with a different cell value heuristic;
• additional test problems (with piecewise constant F), including 3D versions
of the “checkerboard” examples from [8, 9, 26].

http://www.math.cornell.edu/~vlad/papers/pHCM/

A170 ADAM CHACON AND ALEXANDER VLADIMIRSKY

The results (included in the expanded version of this paper [10]) are sufficiently similar
qualitatively, and we omit them here for the sake of brevity.

Layout of experimental results. The HCM tests were run using J = M/23,
M/43, M/83, M/163, and M/323, so there are r = 2, 4, 8, 16, 32 gridpoints per cell
side. “HCMr” and “pHCMr” in the figure legends mean HCM and pHCM with J =
M/r3. (This notation emphasizes the amount of work per cell, but it is different from
the format previously used in [8, 9], where the table headings directly stated J rather
than r.) On each test problem the performance of pHCM depends on three problem
parameters: M , r, and P , the number of processors. The performance/scaling plots
for pHCM2 are omitted to improve the readability of all figures.

Figures 4, 5, 6, and 7 are organized so that columns present different examples
and rows give different comparison metrics.4 Figure 4 compares the performance of
serial methods by plotting the ratio of FMM CPU time to other methods’ times for
M = 1283, 1923, 2563, and 3203. Since we are interested in strong scalability, we
test pHCMr with a fixed problem size while varying P . In Figure 5, M is frozen at
3203. The first row reports the speedup factors of the parallel methods over the serial
methods; these are (HCMr time/pHCMr time), (FSM time/DFSM time), and (LSM
time/DLSM time). The second row of Figure 5 provides the performance comparison
of all serial and parallel methods. The growth of parallel overhead and the change
in total work (as functions of P) are presented for each pHCMr in Figure 6. Plots
similar to Figure 5 but computed for M = 1283 are presented in subsection 6.2.

Main observations.
1. LSM significantly outperforms FMM on example 1 (Figure 4(a)), and its

advantage grows with M . FMM greatly outperforms LSM on example 2
(Figure 4(b)) for all values of M . Their performance is more comparable on
the third example (Figure 4(c)).

2. The performance ranking among serial HCMr methods is problem-dependent
(Figures 4(a)–4(c)).

3. Figures 5(d)–5(f) demonstrate that pHCM has a large advantage over all
serial methods for most r and P combinations. On these three examples with
M = 3203, the median performance for pHCM8 on 32 threads was between
34 and 84 times faster than for FMM, between 7.7 and 166 times faster than
for LSM, and between 18.4 and 436 times faster than for FSM.

4. Generally, the pHCM speedup over HCM is greater when there is more
work per cell. We see in Figures 5(a)–5(c) that the experiments with higher
gridpoints-per-cell number r exhibit better parallelization, and the speedup
of pHCM4 is always the worst.

5. In Figure 5 the position of each curve relative to its error bar reveals the most
likely outcome. For example, the pHCM4 scaling plummets in the worst cases
and plateaus in the best cases. At 32 threads, since the median is near the
bottom of the error bar in all examples, the good cases are relatively rare.

6. As shown in Figure 5, for most r values pHCM scales much better than
DFSM/DLSM. Since DFSM is a synchronous parallel algorithm, it comes as
no surprise that using the LSM does not boost performance significantly—
LSM only reduces the amount of work performed by a subset of the threads.
Better scaling in DLSM would likely be achieved if it were possible to apply

4Table versions of the same benchmarking results are also included in the supplementary mate-
rials.

A PARALLEL TWO-SCALE METHOD FOR EIKONAL EQUATIONS A171

140 160 180 200 220 240 260 280 300 320
0

1

2

3

4

5

6

7

8

9

10

Gridpoints per dimension

F
M

M
 ti

m
e/

 o
th

er
 m

et
ho

d
tim

e

Serial methods compared against FMM, Ex. 1

FMM
FSM
LSM
HCM2
HCM4
HCM8
HCM16
HCM32

140 160 180 200 220 240 260 280 300 320
0

0.5

1

1.5

2

Gridpoints per dimension

F
M

M
 ti

m
e/

 o
th

er
 m

et
ho

d
tim

e

Serial methods compared against FMM, Ex. 2

FMM
FSM
LSM
HCM2
HCM4
HCM8
HCM16
HCM32

(a) (b)

140 160 180 200 220 240 260 280 300 320
0

0.5

1

1.5

2

2.5

3

Gridpoints per dimension

F
M

M
 ti

m
e/

 o
th

er
 m

et
ho

d
tim

e

Serial methods compared against FMM, Ex. 3

FMM
FSM
LSM
HCM2
HCM4
HCM8
HCM16
HCM32

(c)

Fig. 4. Performance of the serial methods for different M . (a) F ≡ 1; (b) F = 1 +
.5 sin (20πx) sin (20πy) sin (20πz); and (c) F = 1+ .99 sin (2πx) sin (2πy) sin (2πz). The data is given
as a ratio of FMM’s CPU time to the times of all other methods.

a special load balancing procedure based on the set of currently “active”
gridpoints.

6.1. Further comments on performance of serial methods.
1. Tradeoffs between FMM and LSM. It is well known that Marching and Sweep-

ing methods are each advantageous on their own subsets of Eikonal problems.
The exact delineation remains a matter of debate. The reader can find careful
comparative studies in [17, 19, 9]. In each example (Figures 4(a)–4(c)) we
observe that, as M increases, the ratio of FMM time to LSM time increases
due to the greater cost of each heap-sort operation. However, FMM’s per-
formance is much more robust to the qualitative differences in the solution;
FMM’s raw times for M = 3203 ranged between 32s (Ex. 1) and 51s (Ex. 2),
while the LSM times were between 3s (Ex. 1) and 363s (Ex. 2). FMM is also
usually much more efficient on problems with complicated domain geometry
(e.g., on domains containing multiple impenetrable obstacles).

2. Grid memory layout and caching issues. Large grids, particularly common
in higher-dimensional problems, present an additional challenge for all (se-
rial and parallel) methods implemented on a shared memory architecture.

A172 ADAM CHACON AND ALEXANDER VLADIMIRSKY

5
10

15
20

25
30

051015

N
um

 T
hr

ea
ds

Serial method time / parallel method time

S
pe

ed
up

, E
x.

 1
, M

 =
 3

20
 3

Id

ea
l

D
et

rix
he

F
S

M
D

et
rix

he
LS

M
pH

C
M

32
pH

C
M

16
pH

C
M

8
pH

C
M

4

5
10

15
20

25
30

0510152025

N
um

 T
hr

ea
ds

Serial method time / parallel method time

S
pe

ed
up

, E
x.

 2
, M

 =
 3

20
 3

Id

ea
l

D
et

rix
he

F
S

M
D

et
rix

he
LS

M
pH

C
M

32
pH

C
M

16
pH

C
M

8
pH

C
M

4

5
10

15
20

25
30

02468101214161820

N
um

 T
hr

ea
ds

Serial method time / parallel method time

S
pe

ed
up

, E
x.

 3
, M

 =
 3

20
 3

Id

ea
l

D
et

rix
he

F
S

M
D

et
rix

he
LS

M
pH

C
M

32
pH

C
M

16
pH

C
M

8
pH

C
M

4

(a
)

(b
)

(c
)

5
10

15
20

25
30

0

0.
51

1.
52

2.
5

N
um

 T
hr

ea
ds

1 / raw time

R
aw

 T
im

e
C

om
pa

ris
on

, E
x.

 1
, M

 =
 3

20
 3

se

ria
l F

M
M

se
ria

l L
S

M
se

ria
l F

S
M

pH
C

M
32

pH
C

M
16

pH
C

M
8

pH
C

M
4

D
et

rix
he

F
S

M
D

et
rix

he
LS

M

5
10

15
20

25
30

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

N
um

 T
hr

ea
ds

1 / raw time

R
aw

 T
im

e
C

om
pa

ris
on

, E
x.

 2
, M

 =
 3

20
 3

se

ria
l F

M
M

se
ria

l L
S

M
se

ria
l F

S
M

pH
C

M
32

pH
C

M
16

pH
C

M
8

pH
C

M
4

D
et

rix
he

F
S

M
D

et
rix

he
LS

M

5
10

15
20

25
30

0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

N
um

 T
hr

ea
ds

1 / raw time

R
aw

 T
im

e
C

om
pa

ris
on

, E
x.

 3
, M

 =
 3

20
 3

se

ria
l F

M
M

se
ria

l L
S

M
se

ria
l F

S
M

pH
C

M
32

pH
C

M
16

pH
C

M
8

pH
C

M
4

D
et

rix
he

F
S

M
D

et
rix

he
LS

M

(d
)

(e
)

(f
)

F
i
g
.
5
.
S
ca
li
n
g
a
n
d
pe
rf
o
rm

a
n
ce

fo
r
p
H
C
M

a
t
M

=
3
2
0
3
.
T
h
e
fi
rs
t
co
lu
m
n

h
a
s
F

≡
1
,
th
e
se
co
n
d
h
a
s
F

=
1
+

.5
si
n
(2
0
π
x
)
si
n
(2
0
π
y
)
si
n
(2
0
π
z
),

a
n
d
th
e

th
ir
d
h
a
s
F

=
1
+

.9
9
si
n
(2
π
x
)
si
n
(2
π
y
)
si
n
(2
π
z
).

A PARALLEL TWO-SCALE METHOD FOR EIKONAL EQUATIONS A173

5
10

15
20

25
30

0102030405060

N
um

 T
hr

ea
ds

100% − Cell Compute %

pH
C

M
 O

ve
rh

ea
d

P
er

ce
nt

, E
x.

 1
, M

 =
 3

20
 3

pH

C
M

32
pH

C
M

16
pH

C
M

8
pH

C
M

4

5
10

15
20

25
30

0102030405060

N
um

 T
hr

ea
ds

100% − Cell Compute %

pH
C

M
 O

ve
rh

ea
d

P
er

ce
nt

, E
x.

 2
, M

 =
 3

20
 3

pH

C
M

32
pH

C
M

16
pH

C
M

8
pH

C
M

4

5
10

15
20

25
30

01020304050

N
um

 T
hr

ea
ds

100% − Cell Compute %

pH
C

M
 O

ve
rh

ea
d

P
er

ce
nt

, E
x.

 3
, M

 =
 3

20
 3

pH

C
M

32
pH

C
M

16
pH

C
M

8
pH

C
M

4

(a
)

(b
)

(c
)

0
5

10
15

20
25

30

0.
91

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

1.
7

1.
8

1.
9

N
um

 T
hr

ea
ds

pHCMr AvS/ HCMr AvS

A
dd

iti
on

al
 W

or
k

In
cr

ea
se

, E
x.

 1
, M

 =
 3

20
 3

pH

C
M

32
pH

C
M

16
pH

C
M

8
pH

C
M

4

0
5

10
15

20
25

30

0.
91

1.
1

1.
2

1.
3

1.
4

N
um

 T
hr

ea
ds

pHCMr AvS/ HCMr AvS

A
dd

iti
on

al
 W

or
k

In
cr

ea
se

, E
x.

 2
, M

 =
 3

20
 3

pH

C
M

32
pH

C
M

16
pH

C
M

8
pH

C
M

4

0
5

10
15

20
25

30

0.
91

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

N
um

 T
hr

ea
ds

pHCMr AvS/ HCMr AvS

A
dd

iti
on

al
 W

or
k

In
cr

ea
se

, E
x.

 3
, M

 =
 3

20
 3

pH

C
M

32
pH

C
M

16
pH

C
M

8
pH

C
M

4

(d
)

(e
)

(f
)

F
i
g
.
6
.

O
ve
rh
ea
d

pe
rc
en

ta
ge
s
a
n
d

a
d
d
it
io
n
a
l
w
o
rk

in
p
H
C
M
r
fo
r
d
iff
er
en

t
P

fo
r
th
e
th
re
e
ex
a
m
p
le
s,

w
it
h

M
=

3
2
0
3
.

In
(a
),

(b
),

a
n
d

(c
)
th
e
va

lu
e
a
t

N
u
m

T
h
re
a
d
s
=

1
o
f
ea
ch

cu
rv
e
a
p
p
ro
xi
m
a
te
ly

gi
ve
s
th
e
pa

rt
o
f
th
e
o
ve
rh
ea
d

a
cc
o
u
n
te
d

fo
r
by

h
ea
p

m
a
in
te
n
a
n
ce

a
lo
n
e;

th
e

p
a
ra
ll
el

o
ve
rh
ea
d

w
o
u
ld

be
gi
ve
n

a
p
p
ro
xi
m
a
te
ly

by
su

bt
ra
ct
in
g
it

fr
o
m

ea
ch

cu
rv
e.

A174 ADAM CHACON AND ALEXANDER VLADIMIRSKY

Solving equation (2) requires accessing the U values for all gridpoints neigh-
boring xijk, but the geometric neighbors can be far apart in memory when
the higher-dimensional grid is stored lexicographically. This results in fre-
quent cache-swapping, ultimately impacting the computational cost. More
detailed profiling (not included here) confirms the resulting slow-down in all
serial methods, including LSM. In other applications space-filling curves have
been successfully used to alleviate this problem (e.g., [25]), but we are not
aware of any successful use in Eikonal solvers. We believe that allocating the
fine grid separately per cell would be advantageous for a robust extension of
HCM/pHCM to higher dimensions. However, our current implementation of
heap-cell methods does not take advantage of this idea.

3. FMM scaling in M . Since the length of the heap increases with M , the num-
ber of flops per heap operation increases, too. In addition, FMM is affected
by additional caching issues: the time per heap-related memory access in-
creases, since the parent/child relationships of heap entries do not translate
to memory proximity of the corresponding gridpoints. Profiling shows that
the cache miss rate increases noticeably with M .

4. HCM scaling in M . For most cell decompositions, when J M , the heap
maintenance is negligible. As J becomes large (e.g., for r = 2), HCMr is
affected by the same issues described for FMM above.

5. Optimal J in HCM. As cell sizes decrease, the causality among cells becomes
stronger (see the end of section 4), and our cell value heuristic does a better
job of capturing the dependency structure; the average number of times each
cell is processed tends to 1. Additionally, the characteristics within each cell
become approximately straight lines, so the per-cell LSM converges quickly.
On the other hand, if J is large enough, the overhead due to heap mainte-
nance becomes significant; this is quantified in Tables 1–3 (“Heap mainte-
nance %” means the percentage of execution time spent outside of sweeping
cells). Turning to individual examples, we note the following:
(a) Ex. 1: HCM with larger cell sizes performs better. See Figure 4(a) and

Table 1. This is due to a very special property of F ≡ 1: since there is
exactly one heap removal per cell regardless of J , the maintenance of the
heap is the dominant factor affecting the performance. Correspondingly,
LSM performs the best. (LSM is equivalent to HCM using only one cell.)

Table 1

Performance analysis of HCM on Ex. 1, M = 3203.

HCM32 HCM16 HCM8 HCM4 HCM2
Avg. sweeps per cell 4.84 4.92 4.96 4.98 4.12
Heap maintenance % 1.09 1.12 1.66 5.88 33.9

(b) Ex. 2: Due to the oscillatory nature of characteristics, HCM performs
better with smaller cell sizes. The ranking among HCMr methods is
more or less the reverse of that for Ex. 1, and the sweeping methods are
the slowest. See Figure 4(b) and Table 2.

(c) Ex. 3: Figure 4(c) and Table 3 show that the performance among the
HCMr methods is qualitatively different from that of the previous exam-
ples. A weakly causal ordering already exists here for moderately sized
cells.

A PARALLEL TWO-SCALE METHOD FOR EIKONAL EQUATIONS A175

Table 2

Performance analysis of HCM on Ex. 2, M = 3203.

HCM32 HCM16 HCM8 HCM4 HCM2
Avg. sweeps per cell 223 100 31.1 12.9 6.97
Heap maintenance % 0.076 0.214 0.954 4.95 30.6

Table 3

Performance analysis of HCM on Ex. 3, M = 3203.

HCM32 HCM16 HCM8 HCM4 HCM2
Avg. sweeps per cell 29.3 14.6 9.37 7.14 5.02
Heap maintenance % 0.292 0.424 0.914 4.55 28.5

The sweeping methods can be accelerated by stopping at the iteration where the
maximum change over gridpoint values is less than or equal to a certain threshold
κ ≥ 0. If κ > 0, the method will terminate “early,” and the output will be different
from the true solution of the discretized system (2). Ideally, κ should be chosen
based on the L∞-norm discretization error, but since the latter is a priori unknown, a
common practical approach is to use a small heuristically selected constant (e.g., [37]).
We note that, for a fixed κ > 0, the number of needed iterations can be quite different
for different h, and there is currently no proof that the early-terminated numerical
values are within κ from the correct solution. See also the discussion and experimental
results in [9]. The results reported here were obtained with κ = 0. Testing with
κ = 10−8 reduces the number of sweeps, but the scaling behavior remains largely the
same; see [10].

6.2. Detailed performance analysis of parallel methods. Two key fac-
tors that affect the speedup of parallel methods are the amount of parallel overhead
(contention, interthread communication, etc.) and the change in the amount of work
performed from serial to parallel. In this section we focus on both the overhead anal-
ysis and the algorithmic differences between pHCM and HCM. The overhead is the
sum of the parallel overhead and the “base” heap maintenance. The latter is given
above in Tables 1–3.

We define the following terms used in Figure 6:

• AvS = ΣP−1
p=0 (total number of sweeps performed by processor p)/J .

• Cell Compute % = percent of total time spent on sweeping cells alone.

• Overhead % = 100% − Cell Compute %, i.e., percent of total time spent beyond
sweeping cells.

1. Effects of P on overhead. As P increases, contention and network commu-
nication increase. If more threads are used for a given cell discretization, it
is more likely for a processor p̂ to wait to obtain a lock (e.g., as in line 8 of
Algorithm 3).

2. Effects of J on overhead. The overhead percentage can be large if either (1) J
is large, so processors spend more time doing heap sorts and contending with
each other to obtain locks to shared data structures, or (2) J is small and P
is large, so there is not enough total work to be divided among the processors.
In this case a processor may spend a significant amount of time outside the
main loop just waiting for work.

A176 ADAM CHACON AND ALEXANDER VLADIMIRSKY

3. Effect of a strong causal structure. The order of processing the cells is dif-
ferent for pHCM and HCM. On Ex. 1 (Figure 4(a)) there is a strict causal
relationship among cells, resulting in exactly one heap removal per cell in
HCM. For pHCM the AvS is larger since cells are not generally processed
in their strict causal order. In fact, on any problem for which HCM has
exactly one heap removal per cell, pHCM will almost surely see an increase
in the total number of heap removals. A cell is added to some processor’s
heap when one of its neighbors updates a gridpoint on the inflow boundary.
But with a strictly causal cell decomposition, this may well result in avoid-
able/premature computations if that cell is actually processed before all of
its inflow boundary data is finalized. This situation is particularly common
when P is large and J is relatively small.

4. Effects of multiple caches. Even by comparing only the time spent on cell-
level sweeping (and accounting for differences in the total AvS), one sees that
the speedup factor is closer to P but not exact. When P is larger, it is
more likely that adjacent cells will be processed simultaneously, a situation
whereby individual sweeps may become slower than their serial counterparts.
Referring back to Figure 3, suppose that in the process of updating a border
gridpoint xi ∈ A the value of its neighbor xj ∈ B is loaded into the cache
of the local processor pA. If xj changes value as a result of sweeps on cell
B, the value stored in pA will either need to be invalidated or have the new
value communicated to it [11]. This operation is orders of magnitude slower
than simply updating a cached value without communication.

5. Robustness of pHCM performance. There is a possibility of the total amount
of work increasing significantly if processor speeds vary. Suppose processor p̂
is slow or has become slow and is processing a high-priority cell A. The other
fast processors will not be able to do useful work on cells downwind from A.
What is more, there is a cascade effect: cells downwind from the downwind
neighbors of A will need to be readded, etc. This effect is more commonplace
for small cells, as seen in Figures 6(d)–6(f). The nonrobust performance of
pHCM4 appears to be due entirely to this effect—the error bars for the work
are large, while those for the overhead are small. Not surprisingly, pHCM2
(omitted in this paper) shows even less robustness than the reported pHCMr.
For small cells and large P , a synchronous parallel implementation may be a
wiser choice.

6. Coarser grids. The charts in Figure 7 present the same information as in
Figure 5, but for M = 1283. The speedup of the parallel methods here is
expectedly worse than for M = 3203. Indeed, for a fixed r and P , a smaller
M yields a smaller number of cells J . For larger values of P , smaller J results
in both an increased overhead and premature processing of cells; see items 2
and 3 above. A good illustration of this is the pHCM32 curve in Figures 7(a)
and 7(c). Since M = 1283 here, the cell decomposition for pHCM32 is only
four cells per domain side; the scaling plateaus at a low number of threads.

7. Parallel sweeping. As reported in [13], the algorithmic complexity of Detrixhe
Sweeping is constant in the number of threads; for DFSM and DLSM, charts
like those in Figures 6(d)–6(f) would all show a constant value of 1. Un-
fortunately, the performance is also affected by the fact that memory access
patterns are more complicated for DFSM/DLSM than for FSM/LSM, which
may prevent the compiler from taking advantage of data locality. Based on
our own OpenMP implementation on a shared memory architecture, the scal-

A PARALLEL TWO-SCALE METHOD FOR EIKONAL EQUATIONS A177

5
10

15
20

25
30

01234567

N
um

 T
hr

ea
ds

Serial method time / parallel method time

S
pe

ed
up

, E
x.

 1
, M

 =
 1

28
 3

Id

ea
l

D
et

rix
he

F
S

M
D

et
rix

he
LS

M
pH

C
M

32
pH

C
M

16
pH

C
M

8
pH

C
M

4

5
10

15
20

25
30

0246810121416

N
um

 T
hr

ea
ds

Serial method time / parallel method time

S
pe

ed
up

, E
x.

 2
, M

 =
 1

28
 3

Id

ea
l

D
et

rix
he

F
S

M
D

et
rix

he
LS

M
pH

C
M

32
pH

C
M

16
pH

C
M

8
pH

C
M

4

5
10

15
20

25
30

024681012

N
um

 T
hr

ea
ds

Serial method time / parallel method time

S
pe

ed
up

, E
x.

 3
, M

 =
 1

28
 3

Id

ea
l

D
et

rix
he

F
S

M
D

et
rix

he
LS

M
pH

C
M

32
pH

C
M

16
pH

C
M

8
pH

C
M

4

(a
)

(b
)

(c
)

5
10

15
20

25
30

02468101214161820

N
um

 T
hr

ea
ds

1 / raw time

R
aw

 T
im

e
C

om
pa

ris
on

, E
x.

 1
, M

 =
 1

28
 3

se

ria
l F

M
M

se
ria

l L
S

M
se

ria
l F

S
M

pH
C

M
32

pH
C

M
16

pH
C

M
8

pH
C

M
4

D
et

rix
he

F
S

M
D

et
rix

he
LS

M

5
10

15
20

25
30

0123456

N
um

 T
hr

ea
ds

1 / raw time

R
aw

 T
im

e
C

om
pa

ris
on

, E
x.

 2
, M

 =
 1

28
 3

se

ria
l F

M
M

se
ria

l L
S

M
se

ria
l F

S
M

pH
C

M
32

pH
C

M
16

pH
C

M
8

pH
C

M
4

D
et

rix
he

F
S

M
D

et
rix

he
LS

M

5
10

15
20

25
30

024681012

N
um

 T
hr

ea
ds

1 / raw time

R
aw

 T
im

e
C

om
pa

ris
on

, E
x.

 3
, M

 =
 1

28
 3

se

ria
l F

M
M

se
ria

l L
S

M
se

ria
l F

S
M

pH
C

M
32

pH
C

M
16

pH
C

M
8

pH
C

M
4

D
et

rix
he

F
S

M
D

et
rix

he
LS

M

(d
)

(e
)

(f
)

F
i
g
.
7
.
S
ca
li
n
g
a
n
d
pe
rf
o
rm

a
n
ce

fo
r
p
H
C
M

a
t
M

=
1
2
8
3
.
T
h
e
fi
rs
t
co
lu
m
n

h
a
s
F

≡
1
,
th
e
se
co
n
d
h
a
s
F

=
1
+

.5
si
n
(2
0
π
x
)
si
n
(2
0
π
y
)
si
n
(2
0
π
z
),

a
n
d
th
e

th
ir
d
h
a
s
F

=
1
+

.9
9
si
n
(2
π
x
)
si
n
(2
π
y
)
si
n
(2
π
z
).

A178 ADAM CHACON AND ALEXANDER VLADIMIRSKY

ability is also sensitive to hardware properties of the specific platform. In [10]
we have also observed somewhat better scaling of DFSM/DLSM on a dif-
ferent hardware system with a smaller ratio of memory bandwidth to CPU
speed. We note that the authors of [13] have also implemented their method
in lower-level memory languages (MPI, CUDA) to alleviate this sensitivity.

Choosing the optimal cell decomposition for a given problem and grid resolution
remains a difficult problem even for the serial HCM. But luckily, as shown in Figure 4
and in [8], a wide range of medium-sized cells exhibits good serial performance and
parallelizes sufficiently well (Figures 5 and 7). In all cases, the parallelization is better
when there is more work per cell (e.g., r is large) and there are enough active cells to
keep all processors busy.

7. Conclusions. We introduced a new parallel algorithm for the Eikonal equa-
tion based on HCM, a fast two-scale serial solver. The numerical experiments demon-
strated that pHCM achieves its best speedup on problems where the amount of work
per cell is high; this occurred when cells were sufficiently large or when the sweeping
within cells required more than a few iterations. As for performance, the combina-
tion of HCM’s speed and pHCM’s good scalability results in a considerable advantage
over some of the best serial methods and the parallelization of FSM/LSM. A compre-
hensive performance/scaling comparison with other existing parallel Eikonal solvers
remains to be performed in the future.

The benchmarking and design of our algorithm was influenced by a particular
shared memory architecture; e.g., each thread currently handles the cell-level sweep-
ing serially. An efficient hybrid GPU/multicore implementation could parallelize the
individual cell processing on a GPU (e.g., as in [36]), while each CPU core would still
maintain its own heap. A possible bottleneck of this approach is the smaller number
of GPUs compared to the number of CPU cores in most current systems. Extensions
to a distributed memory architecture appear more problematic since communication
times would likely dominate the cell processing, at least for the first-order upwind
discretization of the Eikonal considered in this paper.

As in HCM, the performance of pHCM for each problem is dependent on a par-
ticular cell decomposition. For example, given fixed P and M , what value of J will
result in the optimal performance? In this paper we only suggest an answer based
on our numerical experiments, but rigorously addressing it will be clearly useful for
practitioners. Ideally, we would like to base (possibly adaptive) cell decompositions
on a posteriori error estimates. Another interesting direction is the use of noncubic
cells to improve the causal properties of decompositions.

The performance analysis in section 6 suggests a number of possible pHCM im-
provements. A smarter memory allocation strategy can be used to increase the spatial
and temporal locality of data (particularly in higher-dimensional problems). Rigor-
ous criteria for early sweeping termination would bring additional performance gains
to HCM/pHCM (as well as to FSM/LSM). The methods of [13] can be substituted
in place of LSM within cells, especially for problems with large cell sizes. In the
longer term, we intend to investigate the applicability of our approach to other PDEs
and/or discretizations. Causal problems with a higher amount of work per gridpoint
(e.g., discretizations of anisotropic Hamilton–Jacobi) are likely to result in even better
pHCM scalability. We expect this to also be the case for extensions of other parallel
Eikonal solvers (e.g., DFSM/DLSM).

Finally, we hope that practitioners will find pHCM useful for applications requir-
ing its efficiency.

A PARALLEL TWO-SCALE METHOD FOR EIKONAL EQUATIONS A179

Acknowledgments. We thank David Bindel for guidance with parallel com-
puting, and Jeffrey Donatelli for useful correspondence regarding FMM and memory
access costs. We are also grateful to Miles Detrixhe for his help in implementing
parallel Fast Sweeping Methods and analyzing their performance. Finally, we thank
the XSEDE for the computing time allocation and the Texas Advanced Computing
Center for the use of their “Stampede” supercomputer.

REFERENCES

[1] S. Bak, J. McLaughlin, and D. Renzi, Some improvements for the fast sweeping method,
SIAM J. Sci. Comput., 32 (2010), pp. 2853–2874.

[2] M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-
Jacobi-Bellman Equations, Birkhäuser Boston, Boston, 1997.

[3] D. P. Bertsekas, A simple and fast label correcting algorithm for shortest paths, Networks,
23 (1993), pp. 703–709.

[4] D. P. Bertsekas, F. Guerriero, and R. Musmanno, Parallel asynchronous label-correcting
methods for shortest paths, J. Optim. Theory Appl., 88 (1996), pp. 297–320.

[5] M. Boué and P. Dupuis, Markov chain approximations for deterministic control problems
with affine dynamics and quadratic cost in the control, SIAM J. Numer. Anal., 36 (1999),
pp. 667–695.

[6] M. Breuß, E. Cristiani, P. Gwosdek, and O. Vogel, An adaptive domain-decomposition
technique for parallelization of the fast marching method, Appl. Math. Comput., 218
(2011), pp. 32–44.

[7] S. Cacace, E. Cristiani, M. Falcone, and A. Picarelli, A patchy dynamic programming
scheme for a class of Hamilton–Jacobi–Bellman equations, SIAM J. Sci. Comput., 34
(2012), pp. A2625–A2649.

[8] A. Chacon and A. Vladimirsky, Fast two-scale methods for Eikonal equations, SIAM J. Sci.
Comput., 34 (2012), pp. A547–A578.

[9] A. Chacon and A. Vladimirsky, Fast Two-Scale Methods for Eikonal Equations, expanded
technical report; available online from http://arxiv.org/pdf/1110.6220 (2011).

[10] A. Chacon and A. Vladimirsky, A Parallel Heap-Cell Method for Eikonal Equations, ex-
panded technical report; available online from http://arxiv.org/abs/1306.4743 (2014).

[11] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and R. Menon, Parallel
Programming in OpenMP, Academic Press, San Diego, CA, 2001.

[12] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans.
Amer. Math. Soc., 277 (1983), pp. 1–42.

[13] M. Detrixhe, F. Gibou, and C. Min, A parallel fast sweeping method for the Eikonal equation,
J. Comput. Phys., 237 (2013), pp. 46–55.

[14] E. W. Dijkstra, A note on two problems in connection with graphs, Numer. Math., 1 (1959),
pp. 269–271.

[15] J. Donatelli and J. Sethian, A Massively Parallel Multilevel Fast Marching Method Frame-
work, unpublished technical report, 2012.

[16] T. Gillberg, M. Sourouri, and X. Cai, A new parallel 3D front propagation algorithm for
fast simulation of geological folds, Procedia Comput. Sci., 9 (2012), pp. 947–955.

[17] P. A. Gremaud and C. M. Kuster, Computational study of fast methods for the eikonal
equation, SIAM J. Sci. Comput., 27 (2006), pp. 1803–1816.

[18] M. Herrmann, A domain decomposition parallelization of the Fast Marching Method, in An-
nual Research Briefs, Center for Turbulence Research, Stanford, CA, 2003, pp. 213–225.

[19] S.-R. Hysing and S. Turek, The Eikonal equation: Numerical efficiency vs. algorithmic
complexity on quadrilateral grids, in Proceedings of ALGORITMY 2005, Conference
on Scientific Computing, Slovak University of Technology, Bratislava, Slovakia, 2005,
pp. 22–31.

[20] W.-K. Jeong and R. T. Whitaker, A fast iterative method for Eikonal equations, SIAM J.
Sci. Comput., 30 (2008), pp. 2512–2534.

[21] C. Y. Kao, S. Osher, and J. Qian, Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi
equations, J. Comput. Phys., 196 (2004), pp. 367–391.

[22] S. Kim, An O(N) level set method for eikonal equations, SIAM J. Sci. Comput., 22 (2001), pp.
2178–2193.

[23] R. Kimmel and J. A. Sethian, Computing geodesic paths on manifolds, Proc. Natl. Acad. Sci.
USA, 95 (1998), pp. 8431–8435.

http://arxiv.org/pdf/1110.6220
http://arxiv.org/abs/1306.4743

A180 ADAM CHACON AND ALEXANDER VLADIMIRSKY

[24] F. Li, C.-W. Shu, Y.-T. Zhang, and H.-K. Zhao, A second order DGM based fast sweeping
method for Eikonal equations, J. Comput. Phys., 227 (2008), pp. 8191–8208.

[25] J. Mellor-Crummey, D. Whalley, and K. Kennedy, Convergent difference schemes for
nonlinear elliptic and parabolic equations, Internat. J. Parallel Programming, 29 (2001),
pp. 217–247.

[26] A. M. Oberman, R. Takei, and A. Vladimirsky, Homogenization of metric Hamilton–Jacobi
equations, Multiscale Model. Simul., 8 (2009), pp. 269–295.

[27] L. C. Polymenakos, D. P. Bertsekas, and J. N. Tstsiklis, Implementation of efficient
algorithms for globally optimal trajectories, IEEE Trans. Automat. Control, 43 (1998), pp.
278–283.

[28] E. Rouy and A. Tourin, A viscosity solutions approach to shape-from-shading, SIAM J.
Numer. Anal., 29 (1992), pp. 867–884.

[29] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003.
[30] J. A. Sethian, A fast marching level set method for monotonically advancing fronts, Proc.

Natl. Acad. Sci. USA, 93 (1996), pp. 1591–1595.
[31] J. A. Sethian, Fast Marching Methods, SIAM Rev., 41 (1999), pp. 199–235.
[32] J. A. Sethian and A. Vladimirsky, Fast methods for the Eikonal and related Hamilton–Jacobi

equations on unstructured meshes, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 5699–5703.
[33] J. A. Sethian and A. Vladimirsky, Ordered upwind methods for static Hamilton-Jacobi

equations, Proc. Natl. Acad. Sci. USA, 98 (2001), pp. 11069–11074.
[34] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao, Fast sweeping algorithms for a class

of Hamilton–Jacobi equations, SIAM J. Numer. Anal., 41 (2003), pp. 673–694.
[35] J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories, IEEE Trans. Automat.

Control, 40 (1995), pp. 1528–1538.
[36] O. Weber, Y. Devir, A. Bronstein, M. Bronstein, and R. Kimmel, Parallel algorithms

for the approximation of distance maps on parametric surfaces, ACM Trans. Graph., 27
(2008), 104.

[37] H. K. Zhao, A fast sweeping method for Eikonal equations, Math. Comp., 74 (2005), pp.
603–627.

[38] H. K. Zhao, Parallel implementations of the fast sweeping method, J. Comput. Math., 25
(2007), pp. 421–429.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

