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Stochastic shortest path (SSP) problems arise in a variety of discrete stochastic control contexts. An optimal solution to
such a problem is typically computed using the value function, which can be found by solving the corresponding dynamic
programming equations. In the deterministic case, these equations can be often solved by highly efficient label-setting methods
(such as Dijkstra’s and Dial’s algorithms). In this paper we define and study a class of multimode stochastic shortest path
(MSSP) problems and develop sufficient conditions for the applicability of label-setting methods. We illustrate our approach
in a number of discrete stochastic control examples. We also discuss the relationship of SSPs with discretizations of static
Hamilton-Jacobi equations and provide an alternative derivation for several fast (noniterative) numerical methods for these
partial differential equations (PDEs).

Key words : stochastic shortest path; dynamic programming; label-setting; Dijkstra’s method; Dial’s method; optimal
control; Hamilton-Jacobi PDEs; fast marching method

MSC2000 subject classification : Primary: 90C39, 90C40, 49L20, 65N22, 35B37; secondary: 93E20, 65K05, 49L25
OR/MS subject classification : Primary: dynamic programming; secondary: Markov finite state
History : Received June 30, 2007; revised February 28, 2008. Published online in Articles in Advance October 17, 2008.

1. Introduction. Stochastic shortest path (SSP) problems constitute a large class of Markov decision
processes. Their accurate and efficient solution is important for numerous applications, including mathematical
finance, optimal resource allocation, design of discrete-time risk-sensitive controls, and controlled queuing in
communication networks. Our goal in this paper is to study the conditions under which an important subclass
of SSPs can be solved by efficient label-setting methods.
In SSP, the current state of the system at the kth stage is yk, an element in a finite state space X =

�x1� � � � �xM� t= xM+1�. At the next stage, yk+1 is a random variable whose probability distribution on X depends
on yk and on the decision made (control value chosen) at the previous stage. The process terminates on reaching
a special target state t. At each stage, our choice of control determines the incurred cost, and the overall goal
is to minimize the value function (i.e., the expected value of the total accumulated cost up to termination). We
provide a formal description of SSP in §2; here we simply note that the dynamic programming approach yields
a system of M coupled nonlinear equations for the value function. Under mild technical assumptions this system
has a solution, which can be found by value iteration. However, since these iterations are performed in RM , this
can be quite costly, especially considering that infinitely many steps are generally needed for convergence.
On the other hand, SSPs can be considered as a generalization of classical deterministic shortest path (SP)

problems on directed graphs, for which there is a variety of well-understood efficient algorithms. In particular,
noniterative label-setting methods are applicable provided the transition costs in the graph are nonnegative. If
a constant ��M is an upper bound on outdegrees, Dijkstra’s method [12] and Dial’s method [11] solve the
deterministic dynamic programming equations in O
M logM� and O
M� operations, respectively. We provide a
brief overview of these methods in §2.1; here we simply note that both methods hinge on the absolute causality
present in a deterministic problem—the fact that the value function is decreasing along every optimal path to t.
Thus, to build similar methods for SSPs, one needs to find similar causal properties in the stochastic problem.

In fact, Bertsekas showed that a Dijkstra-like method will correctly compute the value function of an SSP if
there exists a consistently improving optimal policy (Bertsekas [4, Vol. II, p. 98]). In §2.2, we define a similar
notion of a consistently �-improving optimal policy, which guarantees the applicability of a Dial-like method.
Unfortunately, both of these criteria are implicit because the existence of such optimal policies is generally not
known a priori.
The main contribution of this paper is the development of explicit conditions on transition cost function(s),

which guarantee the existence of consistently improving and/or consistently �-improving optimal policies for
a large class of “Multimode SSPs.” The exact class of SSPs that we consider is formally defined in §3, but
generally our criteria apply provided

(i) each state x ∈X has a collection of “modes” m1
x�� � � � �mr
x�—(possibly overlapping) subsets of X;
(ii) each individual control is restricted to one of the modes (i.e., has nonzero transition probabilities only

into the states available in that mode);
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(iii) there exists an available control corresponding to each possible probability distribution over the states in
each mode;
(iv) the control cost is defined for each mode separately as a continuous function of the corresponding

probability distribution over the states in that mode.
In this setting, it is natural to interpret the decision made at each stage as a deterministic choice among the

modes of yk plus the choice of a desirable probability distribution for the transition to one of the states in that
mode.
This class obviously includes the classical SP problem (when each mode contains only one possible succes-

sor state). More interestingly, it includes the problem of selecting optimal randomized or mixed controls for
deterministic SP problems, when such randomized or mixed controls might be available at a discount. In §3.1,
we consider several representative examples and discuss the differences between explicitly causal problems
(where the causality stems from a particularly simple structure of transition probabilities) and absolutely causal
problems (where the applicability of label-setting methods stems from certain properties of transition costs, as
derived in §3.3).
The MSSPs also include (but are not limited to) the Markov chain approximations of deterministic continuous

optimal trajectory problems. (E.g., consider a vehicle starting at some point x inside the domain �⊂Rn, which
is controlled to minimize the time needed to reach the boundary ��.) The value function for such problems
is typically found as a viscosity solution of a static first-order Hamilton-Jacobi partial differential equation
(PDE). It is well known that semi-Lagrangian discretizations of that PDE (similar to those in Falcone [13] and
Gonzales and Rofman [14]) can also be obtained from controlled Markov processes on the underlying grids. This
approach was pioneered by Kushner and Dupuis [18] to design approximation schemes for deterministic and
stochastic continuously controlled processes. Recent extensions include higher-order approximations (Szpiro and
Dupuis [31]) and methods for stochastic differential games (Kushner [17]). The resulting systems of equations are
typically treated iteratively, but relatively recently provably convergent label-setting algorithms were introduced
for several important subclasses. For the isotropic case (when the vehicle’s speed depends only on its current
position in � and is independent of the chosen direction of motion), the corresponding PDE is Eikonal. In 1994,
Tsitsiklis introduced the first Dijkstra-like and Dial-like methods for semi-Lagrangian discretizations of this PDE
on a uniform Cartesian grid (Tsitsiklis [32, 33]). The family of Dijkstra-like Fast Marching Methods, introduced
by Sethian in [23] and extended by Sethian and coauthors in Sethian [25], Kimmel and Sethian [16], Sethian
and Vladimirsky [26], was developed for Eulerian upwind discretizations of the Eikonal PDE in the context of
isotropic front propagation problems. A detailed discussion of similarities and differences of these approaches
can be found in Sethian and Vladimirsky [29]. More recently, another Dial-like method for the Eikonal PDE on a
uniform grid was introduced by Kim [15]. For the anisotropic case, the resulting semi-Lagrangian discretization
typically does not have that causal property and the label-setting methods are not directly applicable. The label-
setting Ordered Upwind Methods (Sethian and Vladimirsky [27, 29]) circumvent this difficulty; the key idea
behind them can be interpreted as “modifying the computational stencil on-the-fly to ensure the causality.” In the
appendix of Sethian and Vladimirsky [29], we also demonstrated that the causality is present for the first-order
semi-Lagrangian discretizations of the Eikonal PDE on arbitrary acute meshes.
In all of the above cases, the proofs of causality heavily relied on a geometric interpretation of the problem

(e.g., a discretization of a particular PDE on a specific grid or mesh in Rn). In contrast, we first demonstrate
that the applicability of label-setting methods to MSSPs can be proven even if no geometric interpretation is
available (§3). We then show that the absolute causality of prior numerical methods for the Eikonal PDE can
be easily rederived from the more general criteria introduced in here. In addition, our formulation yields the
following two new results for deterministic continuous optimal trajectory problems (§4):
• a formula for the bucket width in a Dial-like method for Eikonal PDEs on acute meshes;
• an applicability criterion for the label-setting techniques in anisotropic optimal control problems. Finally,

in §5, we discuss the limitations of our approach and list several related open problems.

2. SSP problem. Typically, SSP is described on a directed graph with nodes X = �x1� � � � �xM� t= xM+1��
Our exposition here closely follows the standard setting described in Bertsekas [4].
For each xi, the problem specifies a compact set of allowable controls Ai =A
xi�. If xi is the current state of

the process (i.e., if yk = xi), then our choice of a control value a ∈Ai determines the cost of the next transition
C
xi�a� as well as the probability of transition into each node xj ,

p
xi�xj �a�= pij
a�= P
yk+1 = xj � yk = xi� and the chosen control is a ∈Ai��
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A class of problems where the transition cost C
xi�a�xj � also depends on the resulting successor node xj can
also be handled in the same framework by defining C
xi�a�=

∑M+1
j=1 pij
a�C
xi�a�xj �� It is assumed that the

cost is accumulated until we reach the absorbing target t, i.e., ptt
a�= 1 and C
t�a�= 0� ∀a ∈At .
Consider the class of control mappings �� X 	→ 


⋃M
i=1Ai� such that �
xi� ∈Ai for all xi ∈X. A policy is an

infinite sequence of such mappings � = 
�0��1� � � � �. A stationary policy is a policy of the form 
���� � � � �
and for the sake of brevity, we will also refer to it as “the stationary policy �.”
If the process starts at x ∈X (i.e., y0 = x), the expected cost of using a policy � = 
�0��1� � � � � is defined as

�
x���=E

( �∑
k=0

C
yk��k
yk��
)
�

The value function is then defined as usual, Ui = U
xi� = inf� �
xi���, and a policy �∗ is called optimal
provided U
xi�= �
xi��

∗� for all xi ∈X.
If the value function U
xi� is finite, it should satisfy the dynamic programming equations: U
t�= 0 and

Ui = inf
a∈Ai

{
C
xi�a�+

M+1∑
j=1

pij
a�Uj

}
� ∀xi ∈X\�t�� (1)

An operator T is defined on RM componentwise by applying the right-hand side of Equation (1); i.e., for any
W ∈RM ,


TW�i = inf
a∈Ai

{
C
xi�a�+

M+1∑
j=1

pij
a�Wj

}
� (2)

Clearly, U =


U1
���

UM


 is a fixed point of T and one hopes to recover U by value iteration:

Wn+1 �= TWn starting from an initial guess W 0 ∈RM . (3)

However, T generally is not a contraction unless all stationary policies are known to be proper (Bertsekas and
Tsitsiklis [6]).
Bertsekas and Tsitsiklis [5] demonstrated the existence of a stationary optimal policy, the uniqueness of the

fixed point of T , and that Wn →U for arbitrary W 0 ∈RM under the following assumptions:
• (A0) All C
xi�a� are lower-semicontinuous and all pij
a� are continuous functions of controls a.
• (A1) There exists at least one proper policy (i.e., a policy, which reaches the target t with probability 1

regardless of the initial state x ∈X).
• (A2) Every improper policy � will have cost �
x���=+� for at least one node x ∈X.

(A0) and the compactness of control sets Ai allow us to replace “inf” with “min” in formulas (1) and (2).
(A1) corresponds to a graph connectivity assumption in the deterministic case, while (A2) is a stochastic analog
of the assumption that all cycles have positive cumulative penalty. (A2) also follows automatically if

C = min
x∈X\t�a∈A
x�

C
x�a� > 0�

The convergence of value iteration provides a method to compute U , but generally that convergence does not
occur after any finite number of iterations (for a simple example, see Figure 1). Some error bounds are available,
but typically in an implicit form only (Bertsekas [4, Vol. I, §7.2]). A recent work by Bonet [7] provides a
polynomial upper bound on the number of value iterations required to achieve a prescribed accuracy for the case
when the ratio 
�U��/C� is a priori known to be polynomially bounded.

2.1. Label-setting methods: The deterministic case. Fast methods for deterministic discrete control prob-
lems (e.g., searching for an SP in a graph or a network) can be found in all standard references (e.g., Ahuja
et al. [1], Bertsekas [3]) and we provide a brief overview just for the sake of completeness. The dynamic
programming equations are much simpler in this case: U
t�= 0 and

Ui = min
xj∈N
xi�

�Cij +Uj�� ∀xi ∈X\�t�� (4)
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t x2x1

p12 = 1/2

p21 = 1/2

p1t = 1/2 p2t = 1/2

Figure 1. A simple example with only one available control at every node; the transition probabilities are indicated above and the control
cost is C > 0. By the symmetry, it is clear that U1 = U2 = u and u = C + 1

2

u+ 0�; thus u = 2C. At the same time, the generic value

iteration described by formula (3) will not converge after any finite number of steps unless W 0 =U .

where U
xi�= Ui is the min-cost-to-exit starting from xi; N
xi� is the set of nodes to which xi is connected;
and Cij = C
xi�xj � is the cost of traversing the corresponding link. In the absence of negative cost cycles and
if every xi is connected by some path to t, the value function is finite and well defined. Value iteration (3) will
converge to U after at most M iterations resulting in an O
M2� computational cost.
Label-setting methods provide a better alternative if a suitable lower bound on the transition costs is available.

These methods reorder the iterations over the nodes to guarantee that each Ui is recomputed at most � times,
where the constant upper bound on outdegrees � is assumed to be much smaller than the total number of
nodes M . For example, Dijkstra’s classical algorithm [12] is a label-setting method for the deterministic case
provided all Cij ≥ 0. The idea is based on the causality of the system (4):

Ui may depend on Uj only if Ui ≥Uj� (5)

Such an ordering is not known in advance and has to be obtained at runtime. The method subdivides X into
two classes: permanently labeled nodes P and tentatively labeled nodes L and the values for xi’s in L are
successively reevaluated using only the adjacent values already in P :

U
xi� �= min
xj∈ �N
xi�

�Cij +Uj�� ∀xi ∈ L� (6)

where �N
xi� = N
xi� ∩ P . The algorithm is initialized by placing all nodes into L and setting U
t� = 0 and
U
xi� = +� for i = 1� � � � �M . At each stage, the algorithm chooses the smallest of tentative labels U
x̄�,
“accepts” x̄ (i.e., moves x̄ from L to P ), and reevaluates Ui for each xi ∈ L such that x̄ ∈ N
xi�� Because x̄ is
the only new element in �N
xi�, that reevaluation can be more efficiently performed by setting

U
xi� �=min�U
xi�� 
C
xi� x̄�+U
x̄���� (7)

The algorithm terminates once the list L is empty, at which point the vector U ∈ RM satisfies the system of
Equations (4). The necessity to sort all (finite) temporary labels dictates the use of heap-sort data structures
(Ahuja et al. [1]), usually resulting in the overall computational complexity of O
M logM�.
In addition, if all Cij ≥ ' > 0, then Dial’s label-setting method [11] is also applicable. The idea is to avoid

sorting temporarily labeled nodes and instead place them into buckets of width ' based on their tentative
values. If U
x̄� is the smallest of tentative labels and U
x� is currently in the same bucket, then even after x̄ is
permanently labeled, it cannot affect U
x� since

U
x� < U
x̄�+'≤U
x̄�+C
x� x̄��

Thus, a typical stage of Dial’s method [11] consists of “accepting” (or declaring labels to be permanent) for
everything in the current bucket, recomputing all nodes in L adjacent to those newly labeled permanent, switching
them to other buckets if warranted by the new tentative labels, and then moving on to the next bucket. Because
inserting and deleting from a bucket can be performed in O
1� time, the overall computational complexity
of Dial’s method [11] becomes O
M�. In addition, while Dijkstra’s approach [12] is inherently sequential,
Dial’s method [11] is naturally parallelizable. Many other enhancements of the above label-setting methods are
available in the literature (e.g., see Bertsekas [3] and references therein). Most of those enhancements can also
be used with the label-setting of SSP—provided the basic versions of the above algorithms are applicable.
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2.2. Label-setting methods: The general SSP. Given a stationary policy � for a general SSP, we can
construct its directed dependency graph G� using the nodes X\�t� and connecting xi to xj if pij
�
xi�� > 0.
Assuming (A0), (A1), and (A2), it is easy to show that the value iteration for this problem converges after at most
M iterations provided there exists an optimal stationary policy �∗ such that G�∗ is acyclic. (See Bertsekas
[4, Vol. II, §2.2.1].) We will refer to such SSPs as causal.
Remark 2.1. This condition seems to forbid any self-transitions (e.g., pii
�

∗
xi�� > 0, ∀xi �= t), but an SSP
with self-transitions can be converted into an SSP without them by setting

�C
xi�a�=
C
xi�a�
1−pii
a�

* and �pij
a�=



0 if i= j�

pij 
a�

1−pii
a�
if i �= j*

for
i= 1� � � � �M*

j = 1� � � � �M + 1�

Remark 2.2. One obvious set of causal SSPs consists of all problems where the dependency graph is acyclic
for every stationary policy. The SSP belongs to this class if and only if, ∀xi�xj ∈X\�t�,

∃�1 s.t. there is a path from xi to xj in G�1
=⇒ � ∃�2 s.t. there is a path from xj to xi in G�2

�

We will refer to such problems as explicitly causal (see Examples 3.1 and 3.5 in later sections). Such explicit
causality is independent of the cost function and can be determined based on the available controls and the
transition probabilities alone. The above property imposes a partial ordering on X; using that partial ordering
to go through the nodes, we will clearly have the value function computed correctly in a single sweep, yielding
the computational complexity of O
M�. Thus the applicability of label-setting methods described below is only
important for SSPs that are causal, but not explicitly causal. This is similar to the fact that the original Dijkstra’s
method [12] is not needed to solve the deterministic SP problem on any acyclic digraph.
According to the definition introduced by Bertsekas in [4], an optimal stationary policy �∗ is consistently

improving if
pij
�

∗
xi�� > 0 =⇒ Ui > Uj� (8)

This is a stochastic equivalent of the causality condition (5). Thus the existence of such �∗ not only guarantees
that G�∗ is acyclic, but also allows us to avoid the value iteration process altogether since Ui’s can be computed
by a noniterative Dijkstra-like method instead.
If a consistently improving optimal policy is known to exist, the new equivalent of the causal update Equa-

tion (6) for each xi ∈ L is now

U
xi� �= min
a∈Ã
xi�

{
C
xi�a�+

M+1∑
j=1

pij
a�Uj

}
� (9)

where Ã
xi� is the set of controls, which make transition possible to permanently labeled nodes only, i.e.,
Ã
xi�= �a ∈ A
xi� � pij
a�= 0 for all xj �∈ P�. Once x̄ is moved from L to P , each xi ∈ L needs to be updated
only if the set

Ã
xi� x̄�= �a ∈ Ã
xi� � p
xi� x̄�a� > 0�

is not empty. Finally, the new equivalent of the efficient update formula (7) is now

U
xi� �=min
{
U
xi�� min

a∈Ã
xi � x̄�

{
C
xi�a�+

M+1∑
j=1

pij
a�Uj

}}
� (10)

If a constant ��M is an upper bound on stochastic outdegrees (i.e., if for i= 1� � � � �M , we have �≥ the total
number of nodes xj for which ∃a ∈ A
xi� such that pij
a� > 0), then a Dijkstra-like algorithm described above
will have a computational cost of O
M logM�. Upon termination, the resulting U ∈RM will satisfy the system
of Equations (1). The proof of this is straightforward and is listed as one of the exercises in Bertsekas [4].
Here, we introduce a similar definition:
Given �≥ 0, an optimal stationary policy �∗ is consistently �-improving if

pij
�
∗
xi�� > 0 =⇒ Ui > Uj + �� (11)

When � > 0, it is similarly easy to show that the existence of a consistently �-improving optimal policy guar-
antees the convergence of a Dial-like method with buckets of width � to the value function of the SSP. As in
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the deterministic case, for ��M , the resulting cost will be O
M�. Every consistently �-improving policy is
obviously also consistently improving; when �= 0, this reduces to the previous definition.
Unfortunately, conditions (8) and (11) are implicit because no optimal policy is a priori known. Thus, for

a general SSP, applicability of label-setting methods is hard to check in advance. It is preferable (and more
practical) to develop conditions based on functions C
xi�a� and p
xi�xj �a�, which would guarantee that every
optimal policy is consistently improving (or �-improving). We will refer to such SSPs as absolutely �-causal
(or simply absolutely causal when �= 0). Before developing such explicit conditions for a particular class of
MSSPs in §3, we make several remarks about the general case.
Remark 2.3 (Consistently Almost Improving Policies). Comparing the deterministic causality condi-

tion (5) with the condition (8), it might seem that a Dijkstra-like method should work whenever there exists a
“consistently almost improving optimal policy,” i.e., an optimal �∗ such that

pij
�
∗
xi�� > 0 =⇒ Ui ≥Uj�

A simple example in Figure 1 demonstrates that this is false. Indeed, for this example, a Dijkstra-like method
would terminate with U1 = U2 =+� even though the optimal policy is consistently almost improving and the
correct value function is U1 =U2 = 2C.
Remark 2.4 (Lower Bounds on Control Cost). If �∗ is an optimal policy and a∗ =�∗
xi�, then

C
xi�a
∗�=Ui−

M+1∑
j=1

pij
a
∗�Uj =

M+1∑
j=1

pij
a
∗�
Ui−Uj��

This means that C
xi�a
∗� > � ≥ 0 when �∗ is �-improving. Thus, when building label-setting methods, the

natural class of problems to focus on is an SSP with


A2′� C
xi�a� > 0� for all xi ∈X\�t� and ∀a ∈A
xi��

We note that (A2′) and the compactness of all Ai’s imply (A2).
Remark 2.5 (Label-Setting on a Reachable Subgraph). Consider a reachable set Xc consisting of all

nodes x ∈X such that there exists a policy � leading from x to t with probability 1. Assumption (A1) states that
X = Xc. If this is not the case, but the condition (A2

′) holds, then U
xi�=+� for all xi �∈ Xc. If a stationary
policy �∗ is optimal, then (A2′) implies pij
�

∗
xi��= 0 whenever xi ∈ Xc and xj �∈ Xc� If �
∗ also satisfies (8)

on Xc, then a Dijkstra-like method is still applicable. Upon its termination, the value function will be computed
correctly on Xc and we will have U
x�=+� for all x �∈Xc. (This is analogous to using the original Dijkstra’s
method [12] on a digraph that does not contain directed paths to t from every x ∈ X.) Of course, an efficient
implementation will terminate the method as soon as all nodes remaining in L have a label of +�.
Remark 2.6 (Label-Setting for SSP: Prior Work). It is natural to look for classes of SSPs for which

either (8) or (11) is automatically satisfied by every optimal policy. One simple example is the deterministic
case: If for every xi ∈X\�t� and ∀a ∈A
xi�, there exists xj ∈X such that pij
a�= 1, then every optimal policy
is consistently improving because of (A2′). Tsitsiklis [32, 33] was the first to prove causality of two truly
stochastic SSPs, which he used to develop Dijkstra-like and Dial-like methods for two special discretizations
of the Eikonal PDE on a uniform Cartesian grid. For Eikonal PDEs discretized on arbitrary acute meshes,
the equivalent of property (8) for all optimal controls was proven in Sethian and Vladimirsky [29, Appendix].
Another implementation of a Dial-like method for the Eikonal PDE was introduced in Kim [15]. For the optimal
control of hybrid systems, a similar property was used to build Dijkstra-like methods in Branicky and Hebbar [9]
and Sethian and Vladimirsky [28]. It is interesting to note that of all these papers, only Tsitsiklis’s work mentions
the SSP interpretation of the discretizations, but even in Tsitsiklis [33] the proof of causality is very problem
specific and relies on the properties of the PDE and on a particular choice of the computational stencil. In §4,
we use MSSPs to provide convergence criteria for Dijkstra’s method in the above cases as well as the bucket
width for Dial’s method whenever it applies.
Remark 2.7 (Label-Correcting Methods for SSP). Whenever the value iteration converges after finitely

many steps, label-correcting methods become another viable alternative. Their implementation for the deter-
ministic case can be found in standard references (e.g., Ahuja et al. [1], Bertsekas [3]). Two such methods
were introduced in Polymenakos et al. [21] for the SSP considered in Tsitsiklis [33]. In a more recent work
(Bornemann and Rasch [8]), a similar method was applied to a finite element discretization of the Hamilton-
Jacobi-Bellman PDE. In the latter case, the label-setting is used to obtain convergence-up-to-specified-tolerance
even though the equivalent of condition (8) is not satisfied. Label-setting methods have an optimal worst-case
computational cost; however, in practice, label-correcting methods can outperform them on many problems. The
exact conditions under which this happens are still a matter of debate even in deterministic problems. While
clearly interesting, the comparison of their performance on SSPs is outside the scope of this paper.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Vladimirsky: Label-Setting Methods for MSSP
Mathematics of Operations Research 33(4), pp. 821–838, © 2008 INFORMS 827

3. MSSP problems. We will use -n to denote the set of possible barycentric coordinates in R
n, i.e.,

-n = �. = 
.1� � � � � .n� � .1+ · · ·+ .n = 1 and ∀.j ≥ 0��

We will further define I
.� = �i � .i > 0� and use �e1� � � � � en� to denote the standard canonical basis in Rn.
Finally, we will use Rn

+�0 to denote the nonnegative orthant in R
n, i.e., Rn

+�0 = �
x1� � � � � xn� � ∀xj ≥ 0��
We will assume the following:
(i) For every node xi ∈ X\�t�, we are given a list of “modes” �i =�
xi� = �m1� � � � �mri

�, where each
mode m ∈�i is a nonempty subset of X\�xi� and ri = r
xi�= ��i� ≥ 1.

(ii) The nodes within each mode are ordered; i.e., m= 
zm1 � � � � � z
m
�m��, where z

m
j �= zmk if j �= k.

(iii) All controls have a special structure a= 
m�. ∈-�m�� and there exists an available control 
m�.� ∈A
xi�
for all m ∈�i and all . ∈-�m�.

(iv) The corresponding transition probability is

p
xi�x� 
m�.��=


.j� if x= zmj for some j ∈ �1� � � � � �m��*
0� otherwise.

(v) The transition costs are defined for each mode separately, i.e., C
xi� 
m�.��=Cm
xi� .�.
(vi) For all xi ∈X\�t� and for all m ∈�i, the function Cm
xi� .� is a positive continuous function of ..
(vii) There exists a constant upper bound � on stochastic outdegrees; i.e., 


∑
m∈�i

�m��≤ � for i= 1� � � � �M .
For these MSSPs, it is natural to interpret the decision made at each stage as a deterministic choice of a

mode m plus the choice of a desirable probability distribution for the transition to one of the successor nodes
in m. We note that the above framework is sufficiently flexible: each node can have its own number of modes,
each mode can have its own number of successor nodes, and different modes can have overlaps (e.g., zm1

j can
be the same as zm2

k ). The fully deterministic case is conveniently included when �m� = 1 for each mode m.
The above assumptions imply (A0) and (A2′); hence the value iteration converges at least on the reachable

subgraph Xc (see Remarks 2.4 and 2.5).
The dynamic programming Equations (1) can be now rewritten as

U
x�= min
m∈�
x�

�V m
x��� (12)

V m
x�= min
.∈-�m�

{
Cm
x� .�+

�m�∑
j=1

.jU
zmj �
}
� (13)

Before developing criteria for solvability of the above equations by label-setting methods (§§3.2 and 3.3), we
provide a number of representative examples to illustrate the MSSP framework.

3.1. MSSPs and modeling. In this subsection, we list several examples of discrete stochastic control prob-
lems, which are naturally modeled in the MSSP framework. Our goal is twofold: (i) to explore the type of
stochasticity present in MSSPs, and (ii) to understand which types of MSSPs make the development of label-
setting methods worthwhile.
We begin by considering two very simple MSSPs, which illustrate the difference and relationship between

explicit and absolute causalities.
Example 3.1. For M = 3, suppose that each node has only one mode, and nodes x1�x3 have only one node t

in their modes. I.e., the transition to t is deterministic and costs Cit > 0 for i = 1�3. The x2’s only mode is
m= �x1�x3�. (See Figure 2A.) Because the problem is so simple, it is clear that

U1 =C1t* U3 =C3t* U2 =min
.∈-2

�Cm
x2� .�+ 
.1U1+ .2U3���

This SSP is obviously explicitly causal: U2 will be computed correctly, provided it is computed after U1 and U3

(see Remark 2.2).
However, whether this SSP is absolutely causal depends on the cost function.
Suppose .∗ is the unique minimizer of the above and Cm is such that

U1 <U2 <Cm

(
x2�

[
1

0

])
+U1 <U3�
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t

x1 x1 x6

x5

x3 x3 x4

x2 x2

C1t C1t
C6t

C5t

C4t
C3t

C2t

C3t

t

(A) (B)

Figure 2. Two simple examples of MSSP. In both cases, starting from xi, one needs to select an optimal probability distribution over
two successor nodes (dashed and dotted lines) or to opt for the deterministic transition to t (priced at Cit > 0 and shown by solid lines
wherever available).

If .∗2 > 0, it is clear that the Dijkstra-like method of §2.2 would compute U2 incorrectly (since x2 would be
moved from L to P before x3). If label-setting methods were to be used here, we would need to find conditions
on Cm
x2� .�, which make the above scenario impossible for any choice of positive C1t and C3t .
Example 3.2. For a somewhat more interesting example, consider a circular doubly linked list of M nodes.

(See Figure 2B for the case M = 6.) Each xi has two modes: m= 
xprev�xnext� and m′ = �t�.
The applicability of label-setting methods seems harder to judge in this case, but it is clear that we do not

want xi moved from L to P before its neighbors if the optimal choice at xi involves a possible (nondeterministic)
transition to one of them. For instance,

U2 =min
{
C2t�min

.∈-2

�Cm
x2� .�+ 
.1U1+ .2U3��
}
�

and we note that this equation is provably absolutely causal if in Example 3.1, a Dijkstra-like method produces
correct U2 for all allowable C1t and C3t . In fact, if the same Cm
xi� .� is used for each xi, the above condition
is sufficient to show the absolute causality of the full problem. This idea is generalized in §3.2.
In practical terms, whether or not the MSSP in Example 3.1 is absolutely causal is irrelevant because the

value function can be easily computed directly (see Remark 2.2). On the other hand, Example 3.2 can be
viewed as a variant of an optimal stopping problem, whose absolute causality would yield a more efficient
alternative to the basic value iteration when M is large. We continue by considering a number of interesting
single-mode-for-each-node examples.
In the opening act of Tom Stoppard’s [30] famous play, the title characters engage in statistical experimentation

with supposedly fair coins. The fairness of their coins is highly suspect because they are observing a very long
and uninterrupted run of “heads.” Rosencrantz (Ros) is bored by the game and would be glad to stop playing,
but Guildenstern (Guil) insists on continuing. The following two examples are inspired by the above.
Example 3.3. Suppose Guil will agree to stop only after observing K “heads” in a row. Ros has to pay

some fee for every toss of a coin and is interested in minimizing his expected total cost up to the termination.
Moreover, suppose that for each toss, Ros can request a coin with any probability distribution 
p� 
1− p�� on
possible outcomes (“heads” versus “tails”), but Guil intends to charge him a different fee C
p� based on his
request. The problem is to find an optimal p∗i ∈ 30�14 that Ros should request after observing i “heads” in a row
(i.e., in the state xi).
Figure 3 (left) shows the graph representation of the game for K = 3. Denoting xK = t, we set UK = 0. Since

there is exactly one mode per node, and two successor-nodes only (. ∈-2* .1 = p�.2 = 
1−p�), the Dynamic
Programming equations of this game can be rewritten as

Ui =min
.∈-2

�C
xi� .�+ .1Ui+1+ .2U0�= min
p∈30�14

�C
p�+pUi+1+ 
1−p�U0� for i= 0� � � � �K− 1�

We note that the self-transition in the node x0 can be dealt with in the spirit of Remark 2.1; see Figure 3
(right). This results in a deterministic transition to x1:

U0 =C01+U1� where C01 = min
p∈
0�14

C
p�

p
= C
p∗0�

p∗0
�

After this simplification, the example satisfies all the assumptions listed for MSSPs; therefore the applicability
of label-setting methods can be determined by checking if C
.� satisfies any of the criteria developed in §3.3.
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x0 x1 x2 x0 x1 x2t
p0

* p1
* p2

* p1
* p2

*

(1– p0
*)

(1– p1
*) (1– p1

*)

(1– p2
*) (1– p2

*)

t

Figure 3. The first Guildenstern and Rosencrantz game for K = 3 (left). After i “heads” in a row the game-state is xi . Transitions
corresponding to “heads” and “tails” are shown by dashed and dotted lines, respectively. The self-transition in x0 can be removed and
replaced by a deterministic transition (solid line) with the optimal cost C01 (right).

Remark 3.1. Even though this MSSP is not explicitly causal, a simple structure of the graph makes it almost
trivial for our purposes:

(i) Every (eventually terminating) path from xi leads through xi+1, which implies Ui > Ui+1. Thus, label-
setting methods are only applicable if p∗i = 1 for all i.
(ii) On the other hand, recursive relations similar to the one used above can be repeatedly employed to make

this into a deterministic problem. For example,

U1 = min
p∈30�14

�C
p�+pU2+ 
1−p�U0�= min
p∈30�14

�C
p�+pU2+ 
1−p�
C01+U1��

= min
p∈30�14

�3C
p�+ 
1−p�C014+pU2+ 
1−p�U1�=C12+U2�

where

C12 = min
p∈
0�14

C
p�+ 
1−p�C01

p
= C
p∗1�+ 
1−p∗1�C01

p∗1
�

By repeating this procedure, we can compute the value function in O
K� steps (counting the above minimization
as a single operation) even if some of the p∗i ’s are less than one (in which case the value iteration would not
converge in a finite number of steps).
Example 3.4. Now, suppose that Guil will agree to stop only after observing an uninterrupted run of Kh

“heads” or Kt “tails”; see Figure 4.
Identifying t= xhKh

= xtKt
and x0 = xh0 = xt0, we can rewrite the dynamic programming equations as

U
t�= 0*

U
xhi �= min
p∈30�14

�C
p�+pU
xhi+1�+ 
1−p�U
xt1��* for i= 0� � � � �Kh− 1*

U
xti �= min
p∈30�14

�C
p�+pU
xh1�+ 
1−p�U
xti+1��* for i= 0� � � � �Kt − 1�

Because Remark 3.1 does not apply, in this case, it is possible to have a nontrivial optimal strategy (i.e.,
p∗ ∈ 
0�1�), which might be computable by the label-setting methods. Their applicability can be guaranteed
by certain properties of the cost function as will be shown by theorems in §3.3. For example, this MSSP is
absolutely causal (and thus efficiently computable using a Dijkstra-like method regardless of specific values of
Kh and Kt) for

C1
p�= 3+ 2p−p4− 
1−p�2* or C2
p�=
√
p2+ 
1−p�2* or C3
p�= 4+ 
p− 0�5�3�

x0

x1
h x2

h

x1
t x2

t

x3
h

t

Figure 4. The second Guildenstern and Rosencrantz game for Kh = 4 and Kt = 3. After i “heads” or “tails” in a row the game-state is
xhi or x

t
i , respectively.
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A

B

x0, 2 x1, 2 x2, 2

x0, 1 x1, 1 x2, 1

x0, 0 x1, 0 x2, 0

x3, 1

x3, 0

t

Figure 5. The multitasking problem for KA = 3 and KB = 2. Each of the nodes xi�KB or xKA� j has a deterministic transition to t only. All
other nodes xi� j have a single mode 
xi� j+1�xi+1� j �. The node xKA�KB

is not needed because the process always terminates before reaching it.

(Recalling that .1 = p and .2 = 
1− p�, it will be easy to check that Theorems 3.1, 3.2, and 3.3 apply to C1,
C2, and C3, respectively.)
A similar analysis works when Guil is allowed to use different prices, depending on the current state of the

game (i.e., with C
xi� p� instead of C
p�) or when the number of possible outcomes is higher (e.g., dice instead
of coins, -6 instead of -2).
Example 3.5. Suppose a person is engaged in multitasking, dividing her attention between activities A

and B. This allocation of resources is described by . = 
.A� .B� ∈-2. We assume that
• per every time unit she reaches a new milestone in exactly one of these activities;
• the probability of a milestone reached in A or B is proportional to the fraction of her attention invested in

that activity (.A or .B) during that time unit;
• the current state of the process xi� j reflects the number of milestones reached in both activities;
• the cost (per time unit) of all possible resource allocations is specified by C
xi� j � .�;
• the process terminates after at least KA milestones are reached in A or at least KB milestones reached in B;
• the goal is to minimize the total expected cost up to a termination.

A particular instance of this problem is illustrated in Figure 5.
The above MSSP is obviously explicitly causal because the number of milestones achieved in each activity

can only increase as time goes on regardless of the chosen policy. As usual with explicitly causal SSPs, the
causal ordering of the nodes is a priori known regardless of the cost functions and the label-setting methods are
really not needed. However, the following slight variation of the above is already computationally challenging.
Example 3.6. Suppose the same person also dedicates a part of her attention to some distraction D and her

resource allocation is now . = 
.A� .B� .D� ∈ -3, where .D is the probability of getting completely distracted
and inadvertently resetting the process (i.e., transition into x0�0).
If the diversion is appealing (i.e., if C
xi� j � .� is a decreasing function of .D), this problem is not explicitly

causal and the applicability of label-setting methods becomes relevant. The possibility of self-transition in x0�0
is again dealt with in the spirit of Remark 2.1 and theorems from §3.3 can be then used to test for the absolute
causality. Generalizations of this example (to an arbitrary number of activities and/or partial resets because of a
diversion) can be handled similarly.
We note that the MSSPs occupy a niche in between purely deterministic and generally stochastic shortest

path problems. It is easy to see that in all of the above examples, the stochastic aspect of the model is not due
to some uncontrollable event (after all, the deterministic or pure controls are always available in MSSPs), but
rather due to our belief that a randomized or mixed control might carry a lower cost.
Remark 3.2 (Randomized or Mixed Controls and Deterministic SP). In most deterministic discrete

control problems, mixed policies are considered unnecessary. But this is mainly because of the fact that the cost
of implementing such mixed or randomized controls is usually modeled by a linear function, i.e., Cm
x� .�=∑�m�

j=1 .jCj . (More generally, Theorem 3.1 will show that an optimal control can be found among the pure controls
�ej � for any concave cost function.) However, if the cost is nonconcave, i.e., if C

m
x� .� <
∑�m�

j=1 .jC
m
x� ej � for

at least some . ∈-�m�, then a mixed strategy is available at a discount and might be advantageous.
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The methods developed in this paper are therefore most useful for MSSPs that
• are not explicitly causal (otherwise direct methods are more efficient);
• but are absolutely causal because of (possibly nonconcave) costs satisfying criteria in §3.3.

Additional examples (stemming from discretizations of continuous optimal control problems) are discussed in §4.

3.2. Causality of MSSP and single-mode auxiliary problems. Checking whether a given MSSP is abso-
lutely causal can be hard, although sufficient conditions can be developed hierarchically. This approach was
already used in §3.1 to show the relationship between Examples 3.1 and 3.2.
In the general case, if �∗ is an optimal policy and �∗
x�= 
m∗� .∗�, then the formulas (12 and 13) imply

U
x�= V m∗

x�=Cm∗


x� .∗�+
�m∗�∑
j=1

.∗j U 
zm
∗

j ��

If �∗ is consistently �-improving, we have 
.∗j > 0�=⇒ V m∗

x� > U
zm

∗
j �+ �.

Observation 3.1. For each mode m, let -∗ ⊂-�m� be a set of all minimizers in formula (13). If


.∗j > 0� =⇒ V m
x� > U
zmj �+ ��
∀x ∈X\�t�* ∀m ∈�
x�*

∀.∗ ∈-∗* j = 1� � � � � �m�� (14)

then every optimal policy is consistently �-improving (and this MSSP is absolutely �-causal).
As a result, we can develop label-setting applicability conditions on a mode-per-mode basis. In the following,

we will focus on one x ∈ X\�t� and one mode m ∈ �
x� to develop conditions on Cm
x� ·� that guarantee
causality for all possible values of U
zmj �s. Since x and m are fixed, we will simplify the notation by using

V = V m
x�* C
·�=Cm
x� ·�* Wj =U
zmj �* n= �m��

Furthermore, interpreting . and W as column vectors in Rn, we define F � -n×Rn 	→R as follows:

F 
.�W�=C
x� .�+ .TW �

The dynamic programming Equation (13) can now be rewritten as

V =min
.∈-n

{
C
.�+

n∑
j=1

.jWj

}
=min

.∈-n

F 
.�W�� (15)

Once the vector W is specified, this also determines the set of minimizers -∗
W�= argmin.∈-n
F 
.�W�.

Definition 3.1. The mode m is absolutely �-causal if


.∗j > 0� =⇒ V >Wj + �� ∀W ∈Rn
+�0* ∀.∗ ∈-∗
W�* j = 1� � � � � n�

We will also refer to a mode as absolutely causal if the above holds at least with �= 0.
A simple way to interpret this definition is by considering an auxiliary single-mode MSSP on the nodes

�x� zm1 � � � � � z
m
n � t� with a single mode for each node (see Figure 6). Let the transition from each zmj to t be

deterministic with cost Cjt = Wj ≥ 0, and for x, let the mode be m = 
zm1 � � � � � z
m
n � using the transition cost

Cm
x� ·� from the original problem.
The mode m is absolutely causal if a Dijkstra-like method solves the auxiliary single-mode problem correctly

for every vector W ∈ Rn
+�0. The mode is absolutely �-causal if the same is true for a Dial-like method with

buckets of width �. In fact, Example 3.1 can be viewed as such an auxiliary problem for the mode m ∈�
x2�
of Example 3.2. We emphasize that the absolute causality of auxiliary problems is desirable not because we
intend to use label-setting on any of them (after all, each auxiliary problem is explicitly causal, and a direct
computation is efficient; see Remark 2.2), but because the label-setting methods might be advantageous on the
original MSSP.
The conditions on the mode m in Definition 3.1 are more restrictive than those in (14) since in the latter case,

the �-causality is needed for only one (albeit unknown) vector W . Thus, Observation 3.1 yields the following
sufficient condition for applicability of label-setting methods to MSSPs.

IN
F
O
R
M
S

ho
ld
s

co
p
yr
ig
h
t
to

th
is

ar
tic
le

an
d

di
st
rib

ut
ed

th
is

co
py

as
a

co
ur
te
sy

to
th
e

au
th
or
(s
).

A
dd

iti
on

al
in
fo
rm

at
io
n,

in
cl
ud

in
g
rig

ht
s
an

d
pe

rm
is
si
on

po
lic
ie
s,

is
av

ai
la
bl
e
at

ht
tp
://
jo
ur
na

ls
.in

fo
rm

s.
or
g/
.



Vladimirsky: Label-Setting Methods for MSSP
832 Mathematics of Operations Research 33(4), pp. 821–838, © 2008 INFORMS

tx

z1
m

z2
m

z3
m

z4
m

C1t

C2t

C3t

C4t

Figure 6. An auxiliary single-mode problem for m ∈�
x�. Deterministic transitions are shown by solid lines; n= �m� = 4.

Corollary 3.1. For a general MSSP, if every mode of every node is absolutely causal, then the MSSP is
also absolutely causal and a Dijkstra-like method is applicable. If each mode m is absolutely �m-causal, then
the MSSP is absolutely '-causal with

'=
(

min
x∈X\t�m∈�
x�

��m�

)
�

and a Dial-like method is applicable if '> 0.

We note that it is possible to have an absolutely causal MSSP, some of whose modes are not absolutely causal.
This is reminiscent of the fact that the original Dijkstra’s method [12] might be converging correctly even for
some deterministic problems with negative transition penalties.

3.3. Criteria on cost and absolute causality. Consider a mode m ∈�
x� such that n= �m�> 1. In view
of Corollary 3.1, it is important to find additional conditions on the transition cost function C
·�=Cm
x� ·� that
guarantee m’s absolute �-causality.
One obvious example is C
.�=∑n

j=1 .jCj , where all Cj ’s are positive constants. In that case, F is linear and
Equation (15) reduces to

V =min
.∈-n

F 
.�W�=min
.∈-n

{ n∑
j=1

.j
Cj +Wj�

}
=min

j
�
Cj +Wj���

which is not different from the deterministic SP Equation (4). The same principle works for arbitrary concave
costs.

Theorem 3.1. Suppose

A3� C� Rn 	→R+ is concave�

Then, the mode m is absolutely �-causal with �=minj C
ej �. Moreover, V can be more efficiently evaluated as
V =minj �
C
ej �+Wj��.

Proof. Since F 
.�W� = C
.� + .TW , we know that the function F 
.�W� is concave on -n. Thus, if
.∗ ∈-∗
W�= argmin.∈-n

F 
.�W�, then


.∗j > 0� =⇒ F 
ej �W�= F 
.∗j �W� =⇒ U −Wj =C
ej �≥ �> 0*

hence the mode m is absolutely �-causal. �

Homogeneous cost functions naturally arise in many SSPs. We recall that a function L
y� is absolutely
homogeneous of degree d if L
ay�= �a�dL
y� for all y ∈Rn, a ∈R. If L is also smooth, by Euler’s Homogeneous
Function Theorem, it satisfies the equation yT ;L
y�= dL
y�.

Lemma 3.1. Suppose the cost


A4� C� Rn
+ 	→R+ is continuously differentiable and absolutely homogeneous of degree d�
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Then, for every W ∈Rn
+�0� .

∗ ∈-∗
W�, we have


.∗j > 0� =⇒ V −Wj =
�C

�.j

.∗�− 
d− 1�C
.∗��

Proof. For all j ∈ I
.∗�, the Kuhn-Tucker optimality conditions state that

<=Wj +
�C

�.j

.∗�� (16)

where < is a Lagrange multiplier. We recall that
∑

j∈I
.∗� .∗j = 1. Multiplying (16) by .∗j and summing over all
j ∈ I
.∗�, we obtain

<= ∑
j∈I
.∗�

.∗j <=
∑

j∈I
.∗�
.∗j

(
Wj +

�C

�.j

.∗�

)
=

n∑
i=1

.∗i Wi+
( n∑

i=1
.∗i

�C

�.i

.∗�

)
� (17)

Thus, by Euler’s Homogeneous Function Theorem,

<=
n∑

i=1
.∗i Wi+dC
.∗�= F 
.∗�W�+ 
d− 1�C
.∗�� (18)

Since .∗ is a minimizer, V = F 
.∗�W�= <− 
d− 1�C
.∗� and it follows from (16) that

V −Wj =
�C

�.j

.∗�− 
d− 1�C
.∗� for all W ∈Rn

+�0� .∗ ∈-∗
W�� j ∈ I
.∗�� �

Theorem 3.2. If C satisfies (A4) and


A5�
�C

�.j

.�− 
d− 1�C
.� > �≥ 0� ∀. ∈-n� ∀ j ∈ I
.��

then the mode is absolutely �-causal.

Proof. If .∗ ∈-∗
W� and .∗j > 0, condition (A5) and Lemma 3.1 imply that V −Wj > �≥ 0. �

Remark 3.3. The case most frequently encountered in applications of SSPs is the homogeneity of degree
one. When d= 1, Equation (18) states that <= V and condition (A5) becomes even simpler:


A5′�
�C

�.j

.� > �≥ 0� ∀. ∈-n� ∀ j ∈ I
.��

Lemma 3.1 and Theorem 3.2 can be viewed as generalizations of the key idea in proofs of causality in
Tsitsiklis [33] and Sethian and Vladimirsky [29, Appendix].
Remark 3.4. If (A4) holds and C is strictly convex, then (A5) is a necessary condition for the abso-

lute �-causality of the mode. Indeed, suppose (A5) is violated for some .̄ ∈ -n, j ∈ I
.̄� and let K = 1 +
maxi
�C/�.i�
.̄�. If for each i= 1� � � � � n, we choose Wi =K− 
�C/�.i�
.̄�, this ensures that W ∈Rn

+, K = <,
and -∗
W�= �.̄�, which implies V ≤Wj + � even though .̄j > 0.

Lemma 3.2. Suppose the cost


A6� C� Rn
+ 	→R+ is twice continuously differentiable�

Then, for every W ∈Rn
+�0� .

∗ ∈-∗
W�� j ∈ I
.∗�, there exists a point .̂ on the straight line segment 3ej � .∗4 such
that

V −Wj =C
ej �−
1
2

ej − .∗�T H
.̂�
ej − .∗��

where H is the Hessian matrix of C
.�.

Proof. If .∗ ∈-∗
W� and j ∈ I
.∗�, then the Kuhn-Tucker optimality conditions yield two different formu-
las (16) and (17) for the Lagrange coefficient <. By combining these, we see that

V −Wj = 
V −<�+ 
<−Wj�=
(
C
.∗�−

n∑
i=1

.∗i
�C

�.i

.∗�

)
+ �C

�.j

.∗�=C
.∗�+ 
ej − .∗�T ;C
.∗��

By Taylor’s theorem, there exists a point .̂ ∈ 3ej � .
∗4⊂-n such that

C
ej �=C
.∗�+ 
ej − .∗�T ;C
.∗�+ 1
2

ej − .∗�T H
.̂�
ej − .∗�*

thus V −Wj =C
ej �− 1
2 
ej − .∗�T H
.̂�
ej − .∗�� �
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Theorem 3.3. Consider an n by 
n − 1� matrix B, whose columns form an orthonormal basis for the
subspace orthogonal to 31� � � � �14T ∈Rn. Suppose the cost C satisfies (A6) and �H
.�= BTH
.�B is its projected
Hessian. If >
 �H
.�� is the maximum eigenvalue of �H
.� and


A7� min
i
C
ei� > �+max

{
0�max

.∈-n

>
 �H
.��
}
�

then the mode is absolutely �-causal.

Proof. First, we assume that max.∈-n
>
 �H
.�� > 0 (the other case is already covered by Theorem 3.1).

If .∗ ∈ -∗
W� and j ∈ I
.∗�, then there exists ? ∈ Rn−1 such that 
ej − .∗� = B?. We note that
�?� = �ej − .∗� ≤√

2. Since Lemma 3.2 applies,

V −Wj =C
ej �−
1
2
?T �H
.̂�?≥C
ej �−

1
2
�?�2>
 �H
.̂��≥min

i
C
ei�−max

.∈-n

>
 �H
.�� > �� �

Remark 3.5. Because the cost function is always evaluated on -n, condition (A4) is somewhat awkward:
The cost can always be considered absolute homogeneous of degree one since C
.� can be replaced by �C
.�=
�.�1C
./�.�1�, which has the same values as C on -n. A more meaningful question is: Assuming that C is
smooth and homogeneous of degree one, what additional conditions on C and its directional derivatives inside -n

are sufficient to guarantee (A5′)? It is easy to see that (A7) is an answer to that question since max.∈-n
>
 �H
.��

is the upper bound on the second derivative of C restricted to any straight line in -n.

4. MSSPs approximating continuous deterministic problems. As already mentioned, MSSPs naturally
arise in approximations of deterministic continuous optimal control problems. To illustrate this, we consider a
class of time-optimal trajectory problems. Many variants of these problems are studied in robotic navigation,
optimal control, and front propagation literature; a detailed discussion of the version presented here can be found
in Sethian and Vladimirsky [29].
Suppose y
t� ∈R2 is the vehicle’s position at the time t and the vehicle starts at y
0�= x inside the domain �.

We are free to choose any direction of motion (any vector in S1 = �a ∈ R2 � �a� = 1�), but the speed will
depend on the chosen direction and the current position of the vehicle. The vehicle’s dynamics is governed by
y′
t�= f 
y
t��a
t��a
t�, where f � R2 × S1 	→ R is a Lipschitz-continuous speed function, satisfying 0< F1 ≤
f 
x�a� ≤ F2 for all x and a. Additional exit-time-penalty q is incurred at the boundary; we will assume that
q� �� 	→R is nonnegative and Lipschitz continuous.
The goal is to cross the boundary �� as quickly as possible.
The value function of this problem is u
x� (the minimal time to exit after starting from x). It is well known

that u
x� is the unique viscosity solution (Crandall and Lions [10]) of the following static Hamilton-Jacobi-
Bellman PDE:

max
a∈S1

�
;u
x� · 
−a��f 
x�a��= 1� x ∈�⊂R2�

u
x�= q
x�� x ∈ ���
(19)

The optimal trajectories coincide with the characteristic curves of this PDE. If the problem is isotropic (i.e., if
f 
x�a�= f 
x��, the above PDE is equivalent to the usual Eikonal equation �;u
x��f 
x�= 1 and the optimal
trajectories coincide with the gradient lines of u
x�.
For simplicity, we will first assume that the domain � is rectangular and that X is a uniform Cartesian grid

on  �. Concentrating on one particular gridpoint x ∈X ∩�, we will number all of its neighbors as in Figure 7.
Suppose that the optimal initial direction of motion a lies in the first quadrant and assume that the corresponding
optimal trajectory remains a straight line until intersecting the segment x1x3 at some point �x (see Figure 7A).
Then, it follows that

u
x�= ��x− x�
f 
x�a�

+ u
�x��
Let �x= .1x1+ .2x3; a linear approximation yields

u
x�≈ ��x− x�
f 
x�a�

+ .1u
x1�+ .2u
x3��

Of course, since �x is not a priori known, we would have to minimize over all possible intersection points and
all four quadrants.
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x

x4

x5 x1 x5

x4 x3 x2

x1

x8x6 x7

x3 x2

a

~x

x

x8x7x6

a

~x

(A) (B)

Figure 7. Two simple stencils using four nearest neighbors (A) or eight nearest neighbors (B) on a uniform Cartesian grid.

We will enumerate all quadrants as follows: �
x�= �
x1�x3�� 
x3�x5�� 
x5�x7�� 
x7�x1��. For any 
z
m
1 � z

m
2 � ∈�

and any . ∈-2, we can similarly denote

�x. = .1z
m
1 + .2z

m
2 * C
.�= ��x. − x�* a. = 
�x. − x�/C
.��

We can now state a semi-Lagrangian discretization of the PDE (19):

U
x�= min

zm1 �zm2 �∈�
x�

min
.∈-2

{
C
.�

f 
x�a.�
+ 
.1U
zm1 �+ .2U
zm2 ��

}
� ∀x ∈X ∩�* (20)

U
x�= q
x�� ∀x ∈X ∩ ���

This (fully deterministic) derivation is similar to the one used by Gonzales and Rofman in [14].
On the other hand, it is easy to see that this system of equations also describes the value function for an

MSSP on X ∪ �t�:
• for the nodes x ∈X ∩ ��, there is a single (deterministic) transition to t with the cost q
x�;
• for the nodes x ∈ X ∩�, the set of quadrants �
x� can be interpreted as a set of modes and Cm
x� .�=

C
.�/f 
x�a.�.
This interpretation is in the spirit of Kushner and Dupuis’ [18] approach of approximating continuous optimal

control by controlled Markov processes.
On a uniform Cartesian grid and the stencil of Figure 7A, we can express C
.� = h

√
.21 + .22 , where h is

the grid size. If the problem is isotropic, the cost function becomes C
x� .� = 
h/f 
x��
√
.21 + .22 . A similar

construction in Rn leads to modes containing n neighbor-nodes each and the cost function

C
x� .�= h

f 
x�

√
n∑

i=1
.2i � (21)

This function is homogeneous of degree one in terms of .. Moreover, 
�C/�.j�
x� .� = 
h2/f 
x��
.j/C
.��,
which is positive if and only if .j > 0. By Theorem 3.2, each mode is absolutely causal and a Dijkstra-like
method can be used to solve the problem. This is, in fact, the first of two methods introduced by Tsitsiklis
in [33]. Since this C is also convex in ., Remark 3.4 shows that the modes are not absolutely �-causal for any
�> 0; hence, Dial’s method is generally not applicable.
Another obvious computational stencil in R2 uses all eight neighboring gridpoints as shown in Figure 7B.

Here, the optimal trajectory is still assumed to remain a straight line until the intersection with a segment, but
the list of segments is different:

�
x�= �
x1�x2�� 
x3�x2�� 
x3�x4�� 
x5�x4�� 
x5�x6�� 
x7�x6�� 
x7�x8�� 
x1�x8���

The discretized Equation (20) still holds, but the difference is that

C
.�= ��x. − x� = �
.1zm1 + .2z
m
2 �− x� = h

√
1+ .22 �
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If the problem is isotropic, the cost function becomes C
x� .� = 
h/f 
x��
√
1+ .22 . Theorem 3.3 is certainly

applicable, but instead we rewrite the above as a function homogeneous of degree one (see Remark 3.5):
C
x� .�= 
h/f 
x��

√

.1+ .2�

2+ .22 � We now note that

�C

�.1

x� .�= h2

f 
x�
1

C
.�
*

�C

�.2

x� .�= h2

f 
x�
1+ .2
C
.�

≥ �C

�.1

x� .��

Since C
.�≤ h
√
2, we conclude that

�Cm

�.j

x� .�≥ h

F2
√
2
= �> 0� ∀x ∈X ∩�� ∀m ∈�
x�� ∀. ∈-2� j = 1�2� (22)

By the Theorem 3.2, each mode is absolutely �-causal and a Dial-like method can be used with buckets of
width � (corresponding to the second method introduced in Tsitsiklis [33]).
More generally, suppose that X is a simplicial mesh on  �⊂Rn with the minimum edge length of h. Let S
x�

be the set of all simplexes in the mesh that use x as one of the vertices. Each such simplex s ∈ S
x� corresponds
to a single mode m ∈�
x� consisting of all other vertices of s besides x. For any mode m= 
zm1 � � � � � z

m
n � and

any . ∈-n, we can similarly define

�xm. =
n∑

i=1
.iz

m
i * Cm
.�= ��xm. − x�* am. = 
�xm. − x�/Cm
.��

Since Cm
.�=√∑n
i=1
∑n

k=1 .i.k
z
m
i − x�T 
zmk − x�, we see that

�Cm

�.j

.�= 
zmj − x�T 


∑n
i=1 .i
z

m
i − x��

Cm
.�
= 
zmj − x�T 
�xm. − x�

Cm
.�
= 
zmj − x�T am. = �zmj − x� cos?.� j �

where ?.� j is the angle between a
m
. and 
zmj − x�. Suppose ?
x�m� is the maximum angle between a pair of

vectors 
zmk − x� and 
zmi − x� maximizing over all i� k ∈ �1� � � � � n�. Furthermore, define

?
x�= max
m∈�
x�

?
x�m�* ?= max
x∈X∩�

?
x��

Since am. lies in the cone defined by 
zm1 −x�� � � � � 
zmn −x�, we know that ?.� j ≤ ?
x�m�≤ ?
x�≤ ?� Therefore(
?<

�

2

)
=⇒ �Cm

�.j

.�= �zmj − x��am. � cos?.� j ≥ h cos?> 0�

The dynamic programming equations in this case become

U
x�=minm∈�
x� min.∈-n

{
Cm
.�

f 
x�am
. �
+
(∑n

i=1 .iU
zmi �
)}

� ∀x ∈X ∩�*

U
x�= q
x�� ∀x ∈X ∩ ���

(23)

The cost function Cm
x� .�= Cm
.�/f 
x�am. � is homogeneous of degree one in .. For the isotropic case, we
see that

�Cm

�.j

x� .�= 1

f 
x�
�Cm

�.j

.�= �zmj − x� cos?.�j

f 
x�
�

Thus, for the Eikonal PDE on any acute mesh (i.e., for ?<�/2), each mode of the discretization is absolutely
causal by Theorem 3.2 and a Dijkstra-like method is applicable (this is a rederivation of the result in Sethian and
Vladimirsky [29, Appendix]). Moreover, if ?<�/2, then 
�Cm/�.j�
x� .�≥ h cos?/F2 = �> 0. This provides
the optimal bucket width � to use in a Dial-like method when solving the Eikonal PDE on any acute mesh. As
far as we know, no general formula for � has been derived elsewhere up till now.
We note that the last result is applicable even in a more general situation when the computational stencil S
x�

does not correspond to a set of nonoverlapping simplexes present in the mesh; e.g., in Figure 7B, ?=�/4,
and this yields the same � as already derived in (22). That leads to an interesting dilemma: including more
nearby nodes into a computational stencil usually decreases ? and increases the bucket width, thus reducing the
total number of “bucket acceptance” steps until the termination of Dial’s algorithm. On the other hand, a larger
S
x� increases both the computational complexity of a single step (more tentative labels to update after each
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acceptance) and the discretization error (proportional to h in the above examples). Finding an optimal way for
handling this trade-off, could further speedup noniterative methods for Eikonal PDEs on acute meshes. We note
that h/F2 remains the upper bound for � and corresponds to the situation when the vehicle is allowed to move
only along the directions 
zmj − x�.
A much harder question is the applicability of label-setting methods to semi-Lagrangian discretizations of

anisotropic optimal control problems. It is well known that Equations (23) are generally not causal; this issue is
discussed in detail in Sethian and Vladimirsky [29] and Vladimirsky [34]. On uniform Cartesian grids, the criteria
for applicability of a Dijkstra-like method to anisotropic problems were previously provided in Sethian [24],
Osher and Fedkiw [19], and more recently in Alton and Mitchell [2]. All of these criteria are grid-orientation
dependent; i.e., given a Hamilton-Jacobi PDE, its semi-Lagrangian or Eulerian discretization may or may not be
computed correctly by a Dijkstra-like method, depending on whether the anisotropy in the PDE is aligned with
the grid directions. Here, we provide a criterion for applicability of a Dijkstra-like method for discretizations
based on arbitrary acute stencils. In the anisotropic case,

�Cm

�.j

x� .�= f 
x�a.�
�C

m/�.j�
.�− Cm
.�
�f /�.j�
x�a.�

f 2
x�a.�
�

Suppose there exists �≥ 0 such that ∀x ∈X ∩�� ∀m ∈�
x�� ∀. ∈-n� ∀ j ∈ �1� � � � � n�,


.j > 0� =⇒ �f

�.j

x�a.� <

f 
x�a.�3
�C
m/�.j�
.�− �f 
x�a.�4

Cm
.�
�

By Theorem 3.2, this implies that a Dijkstra-like method will be applicable and a Dial-like method will also
be applicable if � > 0. Building label-setting methods based on this sufficient condition could potentially yield
algorithms outperforming the Ordered Upwind Methods specially designed to restore the causality of anisotropic
problems by dynamically extending the stencil (Sethian and Vladimirsky [27], Vladimirsky [34], Sethian and
Vladimirsky [29]). We intend to explore this approach in future work.

5. Conclusions. We defined a large class of MSSP problems and derived a number of sufficient conditions
to check the applicability of the label-setting methods. We illustrated the usefulness of our approach to the
numerical analysis of first-order nonlinear boundary value problems by reinterpreting previous label-setting
methods for the Eikonal PDE on Cartesian grids. For the Eikonal equation on arbitrary meshes, we reinterpreted
the prior Dijkstra-like method and derived the new formula of bucket width for Dial-like methods. We also
developed a new sufficient condition for the applicability of label-setting methods to anoisotropic Hamilton-
Jacobi PDEs on arbitrary stencils.
In practice, the applicability of label-setting methods to a particular SSP can be tested directly in O
M�

operations: Upon the method’s termination, a single value iteration can be applied, and if it results in no changes,
the value function was computed correctly. However, the sufficient conditions (presented above for MSSPs)
allow us to avoid these additional computations.
Unfortunately, the framework of MSSPs is not flexible enough to express many common discrete stochastic

control problems where not all possible probability distributions over successor nodes are available. Nevertheless,
we hope that the key idea of our approach (splitting the original MSSP into a number of absolutely causal
auxiliary problems) can be generalized to test the applicability of label-setting methods to other SSPs. Because
SSPs can be naturally extended to describe stochastic games on graphs (Patek and Bertsekas [20]), we also intend
to investigate the applicability of our approach to the latter. If successful, this could yield efficient numerical
methods for a wide class of first- and second-order static Hamilton-Jacobi equations.
In Dial-like methods, the bucket width can sometimes be adjusted on the fly based on the not-yet-accepted

part of the problem only. We expect such extensions to be advantageous for problems where the cost function C
has very different lower bounds for different nodes. Another open question of practical importance is the use of
label-setting methods to obtain an approximation of the value function for noncausal SSPs. Recently, a numerical
method based on a related idea was introduced in Yatziv et al. [35] for Eikonal PDEs: A Dial-like method is
used with buckets of width � for a discretization that is not �-causal. This introduces additional errors (analyzed
in Rasch and Satzger [22]), but decreases the method’s running time.
Finally, the performance comparison of label-setting and label-correcting methods on MSSPs is yet another

interesting topic for future research.
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