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ABSTRACT
Markov Decision Processes are one of the most widely used
frameworks to formulate probabilistic planning problems.
Since planners are often risk-sensitive in high-stake situa-
tions, non-linear utility functions are often introduced to
describe their preferences among all possible outcomes. Al-
ternatively, risk-sensitive decision makers often require their
plans to satisfy certain worst-case guarantees.

We show how to combine these two approaches by consid-
ering problems where we maximize the expected utility of
the total reward subject to worst-case constraints. We gen-
eralize several existing results on the structure of optimal
policies to the constrained case, both for finite and infinite
horizon problems. We provide a Dynamic Programming al-
gorithm to compute the optimal policy, and we introduce
an admissible heuristic to effectively prune the search space.
Finally, we use a stochastic shortest path problem on large
real-world road networks to demonstrate the practical ap-
plicability of our method.

Categories and Subject Descriptors
I.2 [ARTIFICIAL INTELLIGENCE]: Problem Solving,
Control Methods, and Search

General Terms
Algorithms, Theory

Keywords
Planning, Utility Functions, Constraints

1. INTRODUCTION
Markov Decision Processes (MDPs) are one of the most

widely used frameworks to formulate probabilistic planning
problems. In these problems, the notion of risk is related
to the fact that, given the stochastic nature of the problem,
each policy can generally produce several possible outcomes,
and some of them might reflect unsatisfactory performance.
In many applications, such as space planning and natural
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resource management, it is critical to use performance met-
rics that allow the ability to manage the risk, i.e. a certain
level of control over unfavorable outcomes [4, 18].

The problem of managing the risk has been studied ex-
tensively in artificial intelligence, operations research, and
control theory. Many formulations have been proposed (see
Section 2 for more details), among which decision theo-
retic planning and worst-case approaches are the two most
widely used. The former is based on decision theory, more
specifically, on the fact that decision makers accepting a
small number of axioms always choose the course of actions
that maximizes the expected utility of the total reward [16],
where the specific form of the utility function describes the
risk attitude of the planners. The latter is focused on pro-
viding deterministic guarantees for the plans by looking at
worst-case realizations of the random processes involved.

In this paper, we show how to combine these two ap-
proaches by considering problems where the objective is
to maximize the expected utility of the total reward sub-
ject to worst-case, linear constraints. For example, in the
case of a linear utility function, we can maximize the ex-
pected total reward only among those policies whose reward
is larger than a given threshold, even in the worst-case sce-
nario. With a (non-linear) “step” utility function, we can
maximize the probability of reaching a target reward level,
while enforcing the worst-case constraint at the same time.

Our theoretical results extend previous work on MDPs
with non-linear utility functions and show that the optimal
policy for the constrained optimization problem is highly
structured: it is deterministic, and even though generally
not Markovian, it depends on the history only through the
total accumulated reward. Therefore, an optimal policy can
be represented (and approximated) much more effectively
than general history-dependent policies. Furthermore, we
show how to exploit the presence of worst-case constraints
to define an admissible heuristic, which we use in a Dynamic
Programming algorithm to speed up the policy search.

To demonstrate the practical applicability of our method,
we consider stochastic shortest path problems as a special
case of MDPs. We show that our algorithm scales to large
real-world road networks, and it leads to plans that are sig-
nificantly different from the ones obtained with traditional
optimization criteria. We think this type of formulation can
be particularly useful for time-dependent problems, such as
the ones faced by the Green Driver App [2], where traffic
light information are explicitly modeled. In fact, in this
situation it is necessary to consider policies that are non-
Markovian, even when given linear utility functions.
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2. RELATED WORK
Decision theoretic planning has been studied extensively,

mainly in artificial intelligence [18, 14], control theory, and
operations research [10, 15, 1, 7]. Typically, monotonically
non-decreasing utility functions, mapping total rewards to
utility values, are used to to describe the preferences of the
planner. In particular, exponential utility functions [10] are
commonly used because they satisfy a separability property
that allows an efficient Dynamic Programming solution. Re-
cently, researchers have also considered planning problems
with more general non-linear utility functions [12]. The re-
sults in this paper are related to that line of work (and we
use a similar notation whenever possible), but with the novel
introduction of worst-case constraints.

The most conservative approach to account for risk is
worst case planning, where only the worst possible outcome
is optimized. A generalization known as α-value criterion is
introduced in [9], where outcomes that happen with a prob-
ability smaller than α are not considered (when α = 0, it
is equivalent to the worst case). In this work, instead of
optimizing the worst-case scenario, we introduce constraints
that need to be satisfied by the plan, under all possible re-
alizations of the randomness. The relationship of our ap-
proach with worst-case planning is discussed in detail below
in Section 4.1.

There are several existing frameworks for constrained prob-
abilistic planning problems in the literature. Many of them
[1, 7] involve the maximization of an expected (discounted)
reward subject to upper bounds on the total expected (dis-
counted) costs. The main limitation of this approach is that
upper bounding an expected value might provide a guar-
antee in terms of risk that is too weak, because it consti-
tutes only a mild restriction on the possible outcomes (con-
straints are satisfied only on average, while our constraints
are met by all possible realizations). The same holds for
mean-variance analysis [17], where the problem is analyzed
in terms of the tradeoff between expected value and vari-
ance of the total reward (either by imposing constraints on
the variance, or associating a cost with it). The constrained
formulation that is closest to our work is the sample-path
constraint introduced in [15]. In [15], they consider time-
average MDPs, with a reward and cost associated with each
decision. The optimization problem is to maximize the ex-
pected average reward over all policies that meet the sample-
path constraint, where a policy is said to meet the sample-
path constraint if the time-average cost is below a specified
threshold with probability one. Notice that also in this case
the guarantee can be quite weak, because the constraint is
imposed only on an averaged quantity. Finally, in [8] they
derive and solve Dynamic Programming equations for two
special types of worst-case constrained Stochastic Shortest
path problems (in our formalism these correspond to UL

and UK,L utility functions defined in section 6). We empha-
size that the new framework in this paper is significantly
more general and can be applied to general MDPs to provide
worst-case performance guarantees with general non-linear
utility functions.

3. PROBLEM DEFINITION
We consider probabilistic planning problems represented

as Markov Decision Processes. Formally, an MDP is a tuple
(S,A, P, r) where S is a set of states, A is a set of actions, P
is a set of transition probabilities and r : S×A×S 7→ R is an

(immediate) reward function. If an agent executes an action
a ∈ A while in a state s ∈ S, then it receives an immediate
reward r(s, a, s′) and it transitions to a new state s′ ∈ S
with probability P (s′|s, a). We denote by As ⊆ A the set of
actions available while the agent is in state s.

In this paper we consider finite MDP where both the state
space S and action space A are finite sets.

Policies. Let the planning horizon T be the (possibly in-
finite) number of time steps that the agent plans for. A his-
tory at time step t is a sequence ht = (s0, a0, · · · , st−1, at−1, st)
of states and actions that leads from the initial state s0 to
state st at time step t. The set of all histories at time step
t is denoted Ht = (S ×A)t × S.

In a probabilistic setting, a plan is represented by a policy,
where a policy is a sequence of decision rules, one for each
time step in the planning horizon. The most general deci-
sion rules are randomized history-dependent (HR), which are
mappings dt : Ht → P (A), where P (A) is the set of prob-
ability distributions over the set of actions A. A history-
dependent decision rule is called Markovian if it depends
only on the current state st, while it is called deterministic
if it deterministically choses the action to be taken. A policy
is called stationary if dt = d for all time steps t within the
planning horizon and d is a Markovian decision rule. We
denote the class of deterministic stationary (SD) policies by
ΠSD and the class of randomized stationary policies by ΠSR.

Utility Functions. Let wT be the total reward received
by the agent, that is the sum of all the immediate rewards
accrued within the planning horizon

wT =

T−1∑

t=0

rt(st, at, st+1) (1)

A standard approach to model the preferences of the planner
among the possible realizations of wT is to use a monotoni-
cally non-decreasing utility function U : R 7→ R, which maps
total rewards to utility values. Decision theory suggests that
decision makers accepting a small number of axioms always
choose the course of actions that maximizes the expected
utility of the total reward [16].

4. FINITE HORIZON PROBLEMS
First we consider planning problems where the planning

horizon T is finite, and we will later extend the results to
the infinite horizon case. We define the value of a policy
π ∈ ΠHR from an initial state s ∈ S as

vπ
U,T (s) = Es,π

[
U

(
T∑

t=0

rt

)]
= Es,π [U (wT )] (2)

which is the expected utility of the total reward wT . For
standard utility functions, the expected utilities exist and
are finite because there is a finite number of possible finite
trajectories in finite MDPs [14]. The optimal values

v∗
U,T (s) = sup

π∈Π
vπ

U,T (s) (3)

exist since the values exist for every policy π ∈ Π. Proper-
ties of the optimal policy for this case have been studied in
[12]. In particular, the optimal policy is deterministic and
even though it is generally not Markovian, it depends on the
history ht only through the accumulated reward wt.
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4.1 Worst-Case Constraints
Risk-sensitive planners are often interested in worst-case

scenarios. With this perspective, a common approach is to
look for a policy that maximizes the worst case performance
(game against nature). Formally, in the max-min version of
the problem, we seek to optimize

d∗
T (s) = sup

π∈Π
dπ

T (s) (4)

where

dπ
T (s) = min {k|P [wT = k] > 0} (5)

is the worst-case realization of the total reward wT (the def-
inition is well posed since wT is a discrete random variable
with a finite sample space for a finite MDP).

In this paper, we consider situations where the planner
wants to enforce linear worst case constraints on the total
reward wT of the form

wT > L (6)

for all possible realizations of wT (equivalently, (6) has to
hold almost surely, because wT has a finite sample space).
Notice that the game against nature approach is equivalent
to finding the largest value of L such that condition (6) can
be met.

In this paper we combine the problem of finding a policy
that maximizes the expected utility, with the presence of
linear worst-case constraints on the total reward. Formally,
we wish to find

v∗
U,T,L(s) = sup

π∈Π(L)

vπ
U,T (s) (7)

where the optimization is restricted to the set of policies
Π(L) whose corresponding total reward wT satisfies condi-
tion (6), for all possible realizations of wT . The problem is
well defined when the set Π(L) is not empty, that is if and
only if L < d∗

T (s).
As an example, in the simplest case of a linear utility

function U(x) = x, the objective is to maximize the total
expected reward but only among those policies with a guar-
anteed lower bound L on the total reward.

4.2 Extended-Value Utility Functions
We show that the constrained problem defined by Equa-

tion (7) can be solved by considering the original optimiza-
tion problem defined by Equation (3) with a more general
utility function. We introduce the concept of an extended-
value utility function, which can be used to model linear
worst case constraints on the total reward wT . Let R = R∪
{−∞} be the affinely extended real number system, which
turns into a totally ordered set by defining −∞ ≤ a ≤ +∞
for all a ∈ R. We define an extended-value utility function a
monotonically nondecreasing function U : R→ R that maps
wealth levels to the corresponding utility values.

Let us consider the problem previously defined by Equa-
tions (2) and (3) in the more general case where U is an
extended-value utility function. Recall that E[X] exists and
E[X] = E[X+] − E[X−] when E[X+] < ∞ or E[X−] < ∞,
where X+ and X− denote the positive and negative part of
X, respectively. In the more general case of an extended-
value utility function, the expected utilities defined by (2)
exist (but are not always finite), because E[U (wT )+] < ∞
since the number of trajectories is finite for finite MDPs.

Notice that agents acting as though they were maximizing
expected extended utility functions satisfy the Completeness
and Transitivity axioms of the Von Neumann-Morgenstern
Utility Theorem [16], because the extended real number sys-
tem is totally ordered and the order relation is transitive.
Moreover, they satisfy the Indipendence axiom by the lin-
earity of expectation. Notice however that they violate the
Continuity axiom. In fact, given three lotteries such that
A � B � C (A is preferred over B, and B over C) and
where the expected utilities of A and B are finite but the
expected utility of C is −∞, there is no combination of A
and C that gives an expected utility that is equal to the one
of B.

The optimal values defined by (3) need not to be finite,
but they are bounded from above since the total rewards are
bounded and thus the expected utilities of the total reward
for all policies are bounded from above as well. The following
result holds:

Lemma 1. For any extended value utility function U , let
L = sup{w|U(w) = −∞}. Then for any policy π ∈ ΠHR,
vπ

U,T (s) > −∞ if and only if wT > L almost surely.

Proof. If P [wT ≤ L] > 0, it follows vπ
U,T (s) = −∞. If

wT > L almost surely, then it follows by monotonicity that
vπ

U,T (s) > U(L) ≥ −∞.

As a corollary, if the optimal value is finite, then the worst
case constraint wT > L is satisfied by the optimal plan.

Using Lemma 1, we show that we can solve the con-
strained problem defined by Equation (7) for a standard
utility function U by solving the unconstrained problem (3)
with an extended-value utility function Ue defined as follows

Ue(x) =

{
−∞ x ≤ L
U(x) x > L

Lemma 2. For any utility function U and lower bound L
such that Π(L) is non empty, v∗

U,T,L(s) = v∗
Ue,T (s).

Proof. Let π′ be the optimal policy for the constrained
problem. Since π′ ∈ Π(L), we have wT > L almost surely
and therefore

−∞ < v∗
U,T,L(s) = vπ′

U,T,L(s) = vπ′
Ue,T (s) ≤ v∗

Ue,T (s)

Since v∗
Ue,T (s) = vπ∗

Ue,T (s) > ∞, by Lemma 1, π∗ satisfies
the constraint (6) almost surely, so π∗ ∈ Π(L) and

v∗
U,T,L(s) ≥ vπ∗

Ue,T (s) = v∗
Ue,T (s)

We focus now on characterizing the optimal policy for
the unconstrained problem with an extended value utility
function Ue (we drop the subscript for compactness). In
the rest of the paper, we will use subscripts to indicate the
length of the planning horizon T and the utility function U
used. We will use superscripts to indicate the policy π used
and, when relevant, the decision epoch t the value refers to.

4.3 Optimality Conditions
We provide a characterization of the optimal policies for

maximum expected utility planning problems by generaliz-
ing some results obtained in [12] to the more general case of
extended value utility functions.
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Theorem 1. Let π = (d0, . . . , dT−1) ∈ ΠHR be a policy.
The values vπ,t

U,T (ht) = Eπ [U(wT )|ht] of a policy π at time
step t given an history ht ∈ Ht satisfy

vπ,T
U,T (hT ) = U (wT ) , hT ∈ HT

vπ,t
U,T (ht) =

∑

a∈Ast

dt(ht, a)
∑

s′∈S

P (s′|st, a)v
π,t+1
U,T (ht ◦ (a, s′))

where ht ∈ Ht, 0 ≤ t < T , ◦ is the composition operator,
and the last component of ht is st.

Proof. Similar to Theorem 4.1 in [12].

If we define the optimal values for a history ht as v∗,t
U,T (ht) =

supπ∈Π v
π,t
U,T (ht), then we have v∗,0

U,T (s) = v∗
U,T (s) for any

initial state s. Furthermore,

Theorem 2. The values v∗,t
U,T (ht) are the unique solu-

tions to the optimality equations

v∗,T
U,T (hT ) = U (wT ) , hT ∈ HT

v∗,t
U,T (ht) = max

a∈Ast

∑

s′∈S

P (s′|st, a)v
∗,t+1
U,T (ht ◦ (a, s′)) (8)

for ht ∈ Ht, 0 ≤ t < T and where the last component of ht

is st.

Proof. Similar to Theorem 4.2 in [12].

The above results also show that there exists a determinis-
tic history-dependent optimal policy, that for an history ht

chooses a maximizer in Eq. (8) as action. However, the pol-
icy might depend on the entire previous history ht. In the
following sections we use the state-augmentation approach
to show that the policy has more structure, i.e. it depends
on the history only through the total reward accumulated
so far wt =

∑t−1
k=0 rk(sk, ak, sk+1).

4.4 State Space Augmentation
A deeper characterization of the structure of the opti-

mal policy can be obtained by considering a new augmented
MDP where the state space is augmented with wealth levels
(corresponding to the sum of accumulated rewards). As in
[12], let

R = {0} ∪ {r(s, a, s′)|P (s′|s, a) > 0, s, s′ ∈ S, a ∈ As}
be the set of possible rewards. Then the set W t of all pos-
sible wealth levels at time step t is inductively defined as
follows

W 0 = {0},W t+1 = {r + w|r ∈ R,w ∈Wt}
We consider an extended MDP where the augmented states
space is 〈S〉 = (S × W 0) ∪ (S × W 1) ∪ · · · ∪ (S × WT ).
The actions available in an augmented state 〈s〉 = (s, w) are
A〈s〉 = A(s,w) = As for all wealth levels w. The transition

probability from a state 〈s〉 = (s, w) to 〈s〉′ = (s′, w′) is

P (〈s〉′ | 〈s〉 , a) =

{
P (s′|s, a) if w′ = w + r(s, a, s′)

0 otherwise

All augmented rewards r(〈s〉 , a, 〈s〉′) are zero, and there
is a terminal augmented reward J(〈s〉) = U(w) applicable
at time T for an augmented state 〈s〉 = (s, w). There is
no utility function for the augmented model, so the value

〈z〉〈π〉
T (s, w) of an augmented policy 〈π〉 from initial aug-

mented state (s, w) is given by the expected total augmented
reward (equivalently, by the expected augmented terminal
reward, since all other augmented rewards are zero).

Notice that the construction previously used in [12] cannot
be used in our generalized case because it defines rewards
in the augmented model as the difference of two utilities,
which might not be well defined in for an extended value
utility function. Notice also that the augmented MDP is
still finite for a finite planning horizon T .

The original MDP and the augmented one are closely re-
lated, and intuitively the two underlying stochastic processes
are equivalent. Formally, it can be shown as done in [12]
that there is a 1-1 mapping between a history of the original
model and a class of equivalent histories of the augmented
model.

Lemma 3. For any wealth level w, and for any history
of the original model ht = (s0, a0, s1, · · · , st) ∈ Ht, the se-
quence φw(ht) = 〈h〉t = (〈s〉0 , a0, 〈s〉1 , · · · , 〈s〉t) is a history
of the augmented model, where

〈s〉k = (sk, w̃k) = (sk, w + wk), 0 ≤ k ≤ t
Furthermore, for any history of the augmented model 〈h〉t =
(〈s〉0 , a0, 〈s〉1 , · · · , 〈s〉t) ∈ 〈H〉t where 〈s〉k = (sk, w̃k) for all
0 ≤ k ≤ t, there exists a wealth level w such that w̃k = w+wk

and the sequence ψ(〈h〉t) = (s0, a0, s1, · · · , st) is a history of
the original model.

Proof. Similar to Lemmas 4.3 and 4.4 in [12].

Similarly, using Lemma 3, for any policy in the original
model π = (d0, d1, · · · , dT−1) ∈ ΠHR, we define a policy
of the augmented model, Ψ(π) = (〈d〉0 , 〈d〉1 , · · · , 〈d〉T−1),
such that for all augmented histories 〈h〉, 〈d〉t (〈h〉 , a) =
dt(ψ(〈h〉), a).

For any augmented policy (〈d〉0 , 〈d〉1 , · · · , 〈d〉T−1) , we
define a policy in the original model, Φw = (d0, d1, · · · , dT−1),
such that for all histories h ∈ Ht,

dt(h, a) = 〈d〉t (φw(h), a)

Furthermore, the values of the policies in the original and
augmented model are closely related:

Theorem 3. For each policy π ∈ ΠHR in the original
MDP and for all states s ∈ S,

〈z〉Ψ(π)
T (s, w) = Es,π

[
U(w +

T−1∑

t=0

rt)

]

For each policy 〈π〉 in the augmented MDP, for each wealth
level w ∈W ,

〈z〉〈π〉
T (s, w) = Es,Φw(〈π〉)

[
U(w +

T−1∑

t=0

rt)

]

Proof. First, we need to prove the probabilistic equiv-
alence of the stochastic processes induced by policies that
correspond through the mappings Ψ and Φw. The proof is
similar to the one of Theorem 4.5 in [12] and is omitted.
Furthermore,

〈z〉Ψ(π)
T (s, w) = E(s,w),Ψ(π)

[
T−1∑

t=0

〈r〉t + J(s̃T , w̃T )

]
=

E(s,w),Ψ(π) [U(w̃T )] = Es,π

[
U(w +

T−1∑

t=0

rt)

]
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where (s̃T , w̃T ) is the terminal augmented state, because
both policies produce equivalent random processes. For the
second part,

〈z〉〈π〉
T (s, w) = E(s,w),〈π〉

[
T−1∑

t=0

〈r〉t + J(s̃T , w̃T )

]
=

E(s,w),〈π〉 [J(s̃T , w̃T )] = Es,Φw(〈π〉)
[
U(w +

T−1∑

t=0

rt)

]

because of the probabilistic equivalence.

Since the augmented MDP is a standard MDP, it is well
known [3] that the optimal values 〈z〉∗T (s, w) exist (but are
not necessarily finite) for all augmented states (s, w). More-
over, there exists a Markovian, deterministic policy 〈π〉∗T
that is optimal for the augmented model. We show that
Φ0(〈π〉∗T ) is an optimal policy for the original MDP (opti-
mality for the original MDP refers to the maximum expected
utility criterion):

v∗
U,T (s) = v

π∗
T

U,T (s) = 〈z〉Ψ(π∗
T )

T (s, 0)

≤ 〈z〉∗T (s, 0) = 〈z〉〈π〉∗
T

T (s, 0) = v
Φ0(〈π〉∗

T )

U,T (s)

Notice that the optimal policy Φ0(〈π〉∗T ) for the original
model is not Markovian anymore. However, the dependency
on the history ht is limited, since the decision rules dt only
depend on the accumulated reward wt.

It is also very important for the optimal values to be finite.
Policies that do not meet the worst-case requirements (i.e.,
with infinite values for the expected utility) all have the same
value, even though they might not perform equally badly.

4.5 Policy Computation and Pruning
The augmented problem previously described is a stan-

dard Markov Decision Process, where the objective is to
maximize the total expected reward. Therefore, the optimal
policy 〈π〉∗T can be computed using Dynamic Programming
equations, as shown in Algorithm 1.

Algorithm 1 Dynamic Programming equations for the aug-
mented problem

t← T
for all s ∈ S do

Initialize 〈z〉∗,T
T (s, w) = U(w)

for t = T − 1→ 0 do
for all s ∈ S do

for all w ∈W t do

〈z〉∗,t−1
T (s, w) =

max
a∈As

∑

s′∈S

P (s′|s, a)
[
〈z〉∗,t

T (s′, w + r(s, a, s′))
]

Notice also that 〈z〉∗,t
T (s, w) = −∞ whenever

w + d∗
T−t(s) ≤ L (9)

where d∗
k(s) are the optimal max-min values defined by Equa-

tion (4). Intuitively, it means that 〈z〉∗,t
T (s, w) = −∞ when-

ever we cannot meet the worst-case requirement, not even
when optimizing the worst-case performance. Using condi-
tion (9), we can introduce additional pruning in a Forward

Dynamic Programming algorithm, where the optimal values
〈z〉∗,t

T (s, w) are recursively computed according to

〈z〉∗,t
T (s, w) = max

a∈As

∑

s′∈S

P (s′|s, a)
[
〈z〉∗,t+1

T (s′, w + r(s, a, s′))
]

with the two base cases:

〈z〉∗,t
T (s, w) =

{
U(w) if t = T
−∞ if w + d∗

T−t(s) ≤ L

once we precomputed the optimal max-min values d∗
k(s), for

all s ∈ S and 0 ≤ k ≤ T .

5. INFINITE HORIZON
For an infinite horizon planning problem, the value of a

policy π ∈ ΠHR is defined as

vπ
U (s) = lim

T→∞
vπ

U,T (s) = lim
T→∞

Es,π

[
U

(
T∑

t=0

rt

)]
(10)

In general, the limit is neither guaranteed to exists nor to
be finite, even in the standard case of a real-valued utility
function [13].

However, in the special case of Negative MDPs (where all
rewards are non-positive, i.e. r(s, a, s′) ≤ 0), we can prove
the existence of the limit in Equation (10) in the general
case of an extended value utility function. In fact, we al-
ready proved that the expectation exists for each T , and the
existence of the limit derives from the monotonicity of the
utility function U and wT .

As in the finite horizon case, it is crucial that the optimal
values are finite, because otherwise plans cannot be com-
pared in a meaningful way based on their expected utility.
We therefore provide sufficient conditions that guarantee the
finiteness of the optimal values.

We consider a special class of infinite horizon goal directed
MDPs where there is a finite set of goal states G ⊆ S, where
the agent stops to execute actions, and no longer receives
rewards. Further, we restrict ourselves to the case of negative
MDPs, where r(s, a, s′) ≤ 0.

5.1 Finiteness
Let’s consider the infinite horizon version of the max-min

problem previously described. Let

dπ(s) = lim
T→∞

dπ
T (s)

where dπ
T (s) is defined according to Equation (5). Again,

we can prove that the limit exists by monotonicity. Let
d∗(s) = supπ d

π(s) be the optimal worst-case value. By
definition, under the optimal worst-case policy πWC we have
d∗(s) ≤ wT for all T ≥ 0 and initial states s, so for each
T ≥ 0

U (d∗(s)) ≤ vπW C

U,T (s) ≤ v∗
U,T (s) ≤ U(0) (11)

It follows that if U (d∗(s)) is finite, then from (11) we have
that v∗

U (s) exists and is also finite. Intuitively, this con-
dition means that the worst-case constraint encoded with
the extended value utility function cannot be too restrictive,
that is it cannot be more restrictive than what is possible to
achieve using the optimal worst-case policy.
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5.2 Properties of the Optimal Policy
We consider a negative goal-directed MDP that satisfies

condition (11), with the additional condition r(s, a, s′) < 0
for all s ∈ S \G (strictly negative rewards). Let

L = sup{w|U(w) = −∞} > −∞
We show there exists an optimal policy for the Maximum
Expected Utility objective that is stationary, deterministic
and that depends on the history ht only through the accu-
mulated reward wt. Let

r = max
s∈S\G

max
a∈As

max
s′∈S

r(s, a, s′) < 0, T = ⌈L/|r|⌉+ 1

The following result holds:

Lemma 4. For any policy π ∈ ΠHR for the infinite hori-
zon problem (T =∞) with strictly negative rewards, for any
state s ∈ S, and for all T ′ ≥ T ,

vπ
U,T ′(s) = vπ

U,T (s)

Proof. Let wT be defined as in (1). By monotonicity,
vπ

U,T ′(s) ≤ vπ
U,T

(s). If vπ
U,T

(s) = −∞, we are done. Other-

wise, it must be wT ≥ L almost surely. By the definition

of T and L, it must be the case that sT ∈ G almost surely.
This concludes the proof because rk(sk, ak, sk+1) = 0 almost
surely for any k ≥ T , because we must have reached a goal
state.

Using Lemma 4 and taking limits, we have that for any
policy π ∈ ΠHR and for all initial states, limT ′→∞ vπ

U,T ′(s) =
vπ

U,T
(s). Therefore,

sup
π∈Π

lim
T ′→∞

vπ
U,T ′(s) = sup

π∈Π
vπ

U,T (s) = v∗
U,T (s)

which means that we can solve the infinite horizon problem
by planning for a finite horizon of length T , for instance us-
ing Algorithm 1. Using the results in Section 4 and Lemma
4, the optimal policy for the infinite horizon problem is de-
terministic and history-dependent (but the dependency on
the history is only through the accumulated reward). Fur-
thermore, we show it is stationary.

Lemma 5. For any state s ∈ S, and wealth level w in the
augmented MDP problem we have

〈z〉∗,t1
T

(s, w) = 〈z〉∗,t2
T

(s, w)

Proof. Let 〈π〉∗T = (〈d0〉 , · · · ,
〈
dT−1

〉
) be the optimal

policy for the augmented problem. By the optimality prin-
ciple, 〈z〉∗,t

T
(s′, w′) = 〈z〉∗T−t (s′, w′) . Without loss of gener-

ality, let t1 < t2 ≤ T . By previous theorems, monotonicity
of U and negative rewards assumption

〈z〉∗T−t1
(s, w) = E〈s〉,〈π〉∗

T −t1 [U(w +

T−1−t1∑

k=0

rk)] ≤

E〈s〉,〈π〉∗
T −t1 [U(w +

T−1−t2∑

k=0

rk)] ≤ 〈z〉∗T−t2
(s, w)

If 〈z〉∗,t2
T

(s, w) = −∞ then we are done. Otherwise, w̃T−t2
=

w+
∑T−1−t2

k=0 rk ≥ L almost surely when using policy 〈π〉∗T−t2

from the initial state (s, w). If s ∈ G we are done be-
cause 〈z〉∗,t1

T
(s, w) = 〈z〉∗,t2

T
(s, w) = U(w). Otherwise if

s is not a goal state and since w ∈ W t2 , then it must
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Figure 1: San Joaquin County Road Network

be w ≤ t2 ∗ r. If x̃k is the state after k steps when us-
ing policy 〈π〉∗T−t2

from the initial state (s, w), it must be
x̃T−t2

∈ G almost surely, because otherwise the reward
w̃T−t2

would exceed the bound. Then the following policy

〈π〉′T−t1
= (
〈
dT−t2

〉
, · · · ,

〈
dT−1

〉
, · · · ) satisfies

〈z〉∗T−t1
(s, w) ≥ 〈z〉

〈π〉′
T −t1

T−t1
(s, w) = 〈z〉∗,t2

T
(s, w)

because x̃T−t2
∈ G almost surely.

As a corollary, the optimal policy for the augmented MDP is
stationary and therefore the optimal policy for the original
problem is also stationary. Intuitively, since we are given
an infinite number of steps to reach the goal, the number of
steps already taken does not affect the optimal policy.

Notice that under these assumptions (i.e., with a worst
case constraints), we can compute the optimal policy for the
augmented problem using Algorithm 1, which terminates in
a bounded number of steps. In contrast, using the con-
struction in [12], one has to reach a fixed-point using value-
iteration procedures in a (countably) infinite state space,
which in general requires some form of approximation.

6. STOCHASTIC SHORTEST PATHS
IN ROAD NETWORKS

In a Stochastic Shortest Path problem, a planner agent is
given a graph with vertex set V and edge set E, an initial
node s ∈ V , and a set of goal nodes G ⊆ V . From a node
s ∈ V \ G, the agent can move to any neighboring node
(this is the set of available actions), but unlike standard
shortest path problems, the cost of traversing an edge e ∈
E is stochastic and modeled by a random variable ce with
known probability distribution. The planner stops when a
goal node g ∈ G is reached, and no more costs are incurred.
Given an utility function U (see examples below), the goal
of the agent is to find a plan that maximizes the expected
utility of the total reward, which is defined as minus the
total cost. Notice that the problem can be formulated as
a finite MDP when the random variables {ce, e ∈ E} are
discrete with finite sample space.

We consider a real-world road network [11] as the under-
lying graph (see Figure 1 for an example) in our experi-
ments. The edge lengths {we, e ∈ E} are also provided in
the dataset. The edge costs {ce} model travel times, and
are assumed to be discretized Beta-distributed random vari-
ables. This is a common modeling assumption for tasks with
unknown duration in PERT analysis [6]. In particular, we
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assume ce = m+ (M −m)B(α, β) , where B follows a Beta
distribution with shape parameters α and β. M and m are
respectively the upper and lower bound on ce, and are de-
fined as follows:

M = (1 + u1(e)/2)we

m = (1− u2(e)/2)we

where u1(e) and u2(e) are uniformly distributed in [0, 1].
The parameters α and β are chosen such that the expected
edge cost is equal to the edge length for each e ∈ E (i.e.
E[ce] = we), with a variance chosen uniformly at random.
Note that the rewards {re} are a discretized version of {−ce},
so that the finiteness MDP assumption holds.

6.1 Utility Functions for SSPs
In our experiments, we consider several types of utility

functions. A simple linear utility function U(x) = x leads to
the standard maximization of the expected total reward. To
maximize the expected total reward (equivalently, minimize
expected travel time) with a worst case constraint we use

UL(x) =

{
−∞ x ≤ L
x x > L

(12)

In the Stochastic On Time Arrival formulations [5], also
known as MDPs with Target-Level Utility Functions [12],
the utility function has the form UK(x) = 1[K,+∞)(x) where
1A is an indicator function for the set A. This corresponds
to maximizing the probability of reaching a certain target re-
ward K, since it holds that E[UK(wT )] = E[1[K,+∞)(wT )] =
P[wT ≥ K] To maximize the probability of having a total
reward at least as large as K with a guaranteed lower bound
L < K, we can introduce an extended value utility function
UK,L(x) that is defined to be −∞ when x ≤ L, and equal
to UK(x) otherwise. When costs represent travel times, this
corresponds to maximizing the probability of reaching the
destination by a given deadline, with a worst case constraint.
For instance, we might wish to use this criterion in order to
maximize the probability of getting to the airport at least 3
hours before our flight departure, but no later than check-
in closure time. We can also consider a more general case
where the deadline is soft (as in [12]), because partial credit
is given for being late, up to some point D. We introduce
a worst-case constraint L by using the following extended-
value utility function:

UK,D,L(x) =





1 K ≤ x
(x−D)/(K −D) D ≤ x < K

0 L < x < D
−∞ x ≤ L

Finally, we consider a worst-case constrained exponential
utility function Uγ,L(x), by introducing a worst-case lower
bound L in the standard utility function Uγ(x) = eγx.

6.2 Results
For our experiments we use the San Joaquin County Road

Network graph (with 18263 nodes and 23874 edges) repre-
sented in Figure 1. Every policy π ∈ πHR has an associated
probability distribution for the total reward wT . Assuming
the costs {cE} represent travel times, this corresponds to a
probability distribution for the total travel time cT = −wT .

For each utility function previously introduced, we com-
pute the corresponding optimal policy with a worst case con-
straint L using the forward Dynamic Programming method.

The optimal max-min values d∗
k(s) are precomputed solving

a shortest path problem on the original graph with edge costs
given by the worst-case realization. Given a fixed initial po-
sition s ∈ V and destination node G = {g}, each optimal
policy has a different associated probability distribution for
the total travel time cT (notice that they are all optimal,
but according to different criteria). In Figure 2, we compare
the resulting probability distributions (obtained optimizing
different performance metrics), and we also emphasize their
worst-case realization (the dashed vertical line on the right).
For comparison, we also provide the probability distribu-
tion corresponding to the optimal worst-case policy πWC (in
red). For Markovian policies (such as πWC), the probability
distribution is computed exactly (by evaluating a convolu-
tion), while distributions associated with history-dependent
policies are obtained by Monte Carlo sampling with 100,000
samples (in green).

First, we compare the standard linear utility function U(x) =
x with its worst-case constrained version UL(x) defined as in
Equation (12). In Figure 2a we see the results for a source-
destination pair s, g where we improve the worst-case real-
ization of wT , while at the same time maintaining the same
expected value E[wT ]. In other words, the policy for UL(x)
dominates the one for U(x) = x because it achieves the same
expected value but it improves the worst-case performance.
However, it is not always the case. In Figure 2b, we see that
for a different source-destination pair, improving the worst-
case realization of wT leads to a larger expected travel time
E[cT ] = E[−wT ].

Finally, in Figure 2c and 2d we plot the probability distri-
butions corresponding to UK,D,L(x) (maximizing the prob-
ability of reaching the destination by a given soft deadline
with a worst-case constraint L) and Uγ,L(x). In both cases,
the distributions are significantly different from the one ob-
tained minimizing the expected travel time (in black). No-
tice that in Figure 2c the probability of reaching the des-
tination by the deadline is significantly improved, and that
there is a spike around cT = 3800. This is because according
to UK,D,L(x), any realization of cT larger than −D has the
same utility, as long as they satisfy the worst-case require-
ment. Similarly, the exponential utility function Uγ,L(x)
reflects a strong preference for small realizations of cT . This
can be seen in Figure 2d, where for instance the proba-
bility P [cT < 2900] of having a total travel time smaller
than 2900 is 4 times larger when optimizing Uγ,L(x) rather
than U(x) = x (area under the green and black curve, re-
spectively). This experiment empirically demonstrates that
when the planner cares about different objectives (e.g., a
target level criterion), then augmented policies can achieve
significant improvements over standard Markovian ones.

7. CONCLUSIONS
In this paper, we combined aspects of the two most widely

used frameworks to model risk-sensitive planning, i.e. maxi-
mum expected utility and worst-case (games against nature)
formulations. We introduced a new class of problems, where
the goal is to maximize the expected utility of the total re-
ward wT , subject to a linear worst-case constraint on wT .
We showed how to encode this constraint using an extended
value utility function in a maximum expected utility formu-
lation, and we proved several results on the structure of the
corresponding optimal policy.

We showed that for finite planning horizons and for a class
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(b) Constrained linear, L = −4867
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Figure 2: Resulting probability distributions and worst-case bounds (dashed lines). See pdf for colored version.

of infinite horizon problems, the optimal policy is determin-
istic and although not Markovian, it depends on the history
only through the accumulated reward. Therefore, the pol-
icy can be represented as a set of functions (one for each
state s ∈ S) of the total reward w, which, if necessary, can
be approximated much more effectively than general history
dependent decision rules, i.e. functions defined on the set of
all possible histories Ht.

Although introducing non-linear utility functions allows
the expression of a richer set of planning preferences, it in-
creases the complexity because of the augmentation of the
state space. However, adding worst-case constraints does
not further increase the complexity, and allows us to speed
up the policy search algorithm with additional pruning.

We think this type of formulation can be particularly
useful for time-dependent problems where using the aug-
mented space is unavoidable. For instance, in the Green-
Driver App [2], they face SSPs where the edge costs prob-
ability distributions are dependent on the current time (es-
sentially on wt) because they model traffic lights. Although
we used synthetic edge cost probability distributions, we
showed our approach scales to large real-world networks,
and it leads to significantly different plans with respect to
traditional optimization criteria.
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